

UNIVERSITY OF CAMBRIDGE INTERNATIONAL EXAMINATIONS General Certificate of Education Advanced Level

CANDIDATE NAME				
CENTRE NUMBER		CANDIDATE NUMBER		

COMPUTING 9691/31

Paper 3 May/June 2012

2 hours

Candidates answer on the Question Paper.

No additional materials are required.

No calculators allowed.

READ THESE INSTRUCTIONS FIRST

Write your Centre number, candidate number and name on all the work you hand in.

Write in dark blue or black pen.

You may use a soft pencil for any diagrams, graphs or rough working.

Do not use staples, paper clips, highlighters, glue or correction fluid.

DO NOT WRITE IN ANY BARCODES.

Answer all questions.

No marks will be awarded for using brand names for software packages or hardware.

At the end of the examination, fasten all your work securely together.

The number of marks is given in brackets [] at the end of each question or part question.

1 A database is designed to store data about students at a college and the subjects that they study.

For Examiner's Use

- All students are based in a tutor group
- A tutor supervises all the students in their tutor group
- Each subject has one subject teacher only
- Students study a number of subjects

The following table StudentSubjects was a first attempt at the database design.

Table: StudentSubjects

StudentName	TutorGroup	Tutor	Subject	Level	SubjectTeacher
Tom	6	SAN	Physics	Α	SAN
			Chemistry	Α	MEB
			Gen. Studies	AS	DIL
Joe	7	MEB	Geography	AS	ROG
			French	AS	HEN
Samir	6	SAN	Computing	Α	VAR
			Chemistry	Α	MEB
			Maths	Α	COR
			Gen. Studies	Α	DIL

(a)	(i)	Explain why the table is not in First Normal Form (1NF).	
		[1]
	(ii)	Explain your answer by referring to the above data.	
		[1]
(b)	The	e design is changed to the following:	
		dent (StudentName, TutorGroup, Tutor)	٩r

Using the data given in the original table, show how this data is now stored in the revised table designs.

For Examiner's Use

[3]

Table: Student

StudentName	TutorGroup	Tutor

Table: StudentSubjectChoices

StudentName	Subject	Level	SubjectTeacher

(c) (i) Explain what is meant by a primary key.

[2]

(ii) A student is not allowed to choose the same subject at A Level and AS.

What is the primary key of table StudentSubjectChoices?

[1]

	(iii)	There is a relationship between tables Student and StudentSubjectChoice	s.
		Explain how the relationship is established using a primary key and foreign key.	
			[2]
(d)	The	e design of table StudentSubjectChoices is:	
	Stu	dentSubjectChoices (StudentName, Subject, Level, SubjectTeac	her)
	Exp	plain why this table is not in Second Normal Form (2NF).	
			[2]
(e)	The	design of table Student is:	
	Stu	dent (StudentName, TutorGroup, Tutor)	
	Exp	plain why this table is not in Third Normal Form (3NF).	
			[2]

2

A b	inary pattern can be used to represent different data used in a computer system.	
(a)	Consider the binary pattern: 0101 0011	
	The pattern represents an integer.	
	What number is this in denary?	
		[1]
(b)	Consider the binary pattern: 0001 0101 0011	
	The pattern represents a Binary Coded Decimal (BCD) number.	
	What number is this in denary?	
		[1]
		ניו
(c)	Consider the binary pattern: 1001 0010	
	This represents a two's complement integer.	
	What number is this in denary?	
		[1]
		۲.1

(d)	Floa	ating point is to be used to represent real numbers with:
	•	8 bits for the mantissa, followed by 4 bits for the exponent two's complement used for both the mantissa and the exponent
	(i)	Consider the binary pattern:
		0 1 1 0 1 0 0 0 0
		What number is this in denary? Show your working.
		[3]
	(ii)	The representation shown in part (d)(i) is normalised.
	(''')	
		Explain why floating point numbers are normalised.
		[1]
((iii)	Show the binary pattern for the smallest positive number which can be stored using a normalised 12-bit floating point representation.
		Mantissa:
		Exponent:
		Work out its denary value.
		Denary: [3]

(e)	The developer of a new programming language decides that all real numbers will be stored using 20-bit normalised floating point representation. She cannot decide how many bits to use for the mantissa and how many for the exponent.	E
	Explain the trade-off between using either a large number of bits for the mantissa, or a large number of bits for the exponent.	
	[2]	

3 (a) Customer names are stored in the array Customer.

An algorithm is to be designed to perform a serial search of the array for a requested customer name.

The algorithm will use the variables shown in the table.

Study the table and the algorithm and fill in the gaps.

Identifier	Data Type	Description	
Customer	ARRAY[2000] OF STRING	The customer names	
Index	INTEGER	Index position in the customer array	
IsFound			
SearchName	STRING	The requested customer name	

```
//Serial search algorithm
   INPUT
   \texttt{IsFound} \leftarrow \texttt{FALSE}
   Index \leftarrow 1
   REPEAT
       THEN
             IsFound ← TRUE
             OUTPUT "FOUND - at position " Index " in the array"
          ELSE
             Index ←
       ENDIF
   UNTIL (IsFound = TRUE) OR
   ΙF
       .....
       THEN
          OUTPUT "Customer name was NOT FOUND"
   ENDIF
                                                                 [7]
(b) Comment on the efficiency of the serial search algorithm in part (a) for retrieving a data
   item from an array with 2000 items.
```

© UCLES 2012 9691/31/M/J/12

(c)	A b	inary search may be an alternative algorithm to a serial search.		
	(i)	Describe how this algorithm works. (Do not attempt to write the pseudocode.)		
		[4]		
	(ii)	A binary search is made to locate Cherry.		
		1 Apple		
		2 Banana Cherry		
		4 Kiwi		
		5 Lemon		
		6 Mango		
		7 Plum		
		List, in order, the comparisons which are made.		
		[3]		

Exp	oress	sions can be written in either infix or reverse Polish notation.			
(a)	Eva	valuate this reverse Polish expression:			
	4 6	5 * 3 -			
		[1]			
(b)	Wri	te the following infix expressions in reverse Polish.			
	(i)	(a-5)/(b+c)			
		[1]			
	(ii)	2 * 3 + 6 / 2			
	` '				
		[0]			
		[2]			
(c)	Des	scribe one benefit of storing an expression in reverse Polish.			
		[1]			
	•••••				
(d)	An	expression in reverse Polish can be evaluated on a computer system using a stack.			
	(i)	Describe the operation of a stack.			
		[1]			
	(ii)	A stack is to be implemented as an array with an integer variable to point to the 'top of stack' index position.			
		State whether this is a static data structure or a dynamic data structure and explain your choice.			
		[2]			

(iii) The reverse Polish expression $3\ 7\ *\ 6\ +\ 9\ /$ is to be evaluated using a stack. The first available location on the stack is 1.

For Examiner's Use

Show how the contents of the stack change as this expression is evaluated.

5							
4							
3							
2							
1							

[4]

5 The table shows the assembly language instructions for a processor which has one general purpose register – the Accumulator.

For Examiner's Use

Instr	uction			
Op Code	Operand	Explanation		
LDD	<address></address>	Load using direct addressing		
STO	<address></address>	Store the contents of the Accumulator at the given address		
LDI	<address></address>	Load using indirect addressing		
LDX	<address></address>	Load using indexed addressing		
INC		Add 1 to the contents of the Accumulator		
END		End the program and return to the operating system		

(a) Write on the diagram to explain the instruction shown. Show the contents of the Accumulator after the execution of the instruction.

LDD 105

Accumulator	

	Main memory
100	0100 0000
101	0110 1000
102	1111 1110
103	1111 1010
104	0101 1101
105	0001 0001
106	1010 1000
107	1100 0001
)	J
200	1001 1111

[2]

(b) Write on the diagram to explain the instruction shown. Show the contents of the registers after the execution of the instruction.

LDX 101

Accumulator

Index Register 0000 0011

	Main m	nemory
100	0100	0000
101	0110	1000
102	1111	1110
103	1111	1010
104	0101	1101
105	0001	0001
106	1010	1000
107	1100	0001
ر		J
1	- 1	
200	1001	1111

[4]

(c) Trace this assembly language program using the trace table below.

For Examiner's Use

500	LDD	507	
501	INC		
502	STO	509	
503	LDD	508	
504	INC		
505	STO	510	
506	END		
507	22		
508	170		
509	0		
510	0		

Accumulator

	Memory	Address	
507	508	509	510
22	170	0	0

[5]

(d)	Explain the relationship between assembly language instructions and machine coinstructions.	ode
		[1]

In a mu	Itiprogramming environment the operating system includes a scheduler.
(a) Exp	plain the purpose of the scheduler.
•••••	[2]
(b) A p	rocess will at any time be in one of three states.
(i)	Name and describe each possible state.
	1
	2
	3
	[6]
(ii)	How will the operating system keep details about the state of all processes?
	[1]

6

(c)	Any	process can be described as either 'processor bound' or 'input/output bound'.
	(i)	Explain what is meant by these terms and give a typical application of each.
		Processor bound
		Application which is processor bound
		Input/Output bound
		Application which is I/O bound
		[4]
	(ii)	A particular scheduler allocates a priority to each process for the use of the processor.
		State which type of process – processor bound or I/O bound – would be given higher priority for the use of the processor. Explain why.
		[2]

(a)	Define what is meant by the term computer simulation.
	[2]
(b)	Give two reasons why a computer system is particularly suited to carrying out a simulation.
	1
	2
	[2]
(c)	A supermarket is about to open a new branch and is to use a computer simulation to estimate the number of checkouts which will be required.
	Identify three variables which need to be controlled by the software simulation of the checkout operation.
	1
	2
	3[3]
(d)	The values input to the simulation will affect the outputs produced.
	Give one example for this checkout scenario of a change to an input which will directly affect the output.
	Input change
	Effect on the output
	[2]

Permission to reproduce items where third-party owned material protected by copyright is included has been sought and cleared where possible. Every reasonable effort has been made by the publisher (UCLES) to trace copyright holders, but if any items requiring clearance have unwittingly been included, the publisher will be pleased to make amends at the earliest possible opportunity.

University of Cambridge International Examinations is part of the Cambridge Assessment Group. Cambridge Assessment is the brand name of University of Cambridge Local Examinations Syndicate (UCLES), which is itself a department of the University of Cambridge.

7