
® IGCSE is the registered trademark of Cambridge International Examinations.

This document consists of 10 printed pages.

© UCLES 2016 [Turn over

Cambridge International Examinations
Cambridge International Advanced Subsidiary and Advanced Level

COMPUTING 9691/22

Paper 2 Written Paper May/June 2016

MARK SCHEME

Maximum Mark: 75

Published

This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the
examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the
details of the discussions that took place at an Examiners’ meeting before marking began, which would have
considered the acceptability of alternative answers.

Mark schemes should be read in conjunction with the question paper and the Principal Examiner Report for
Teachers.

Cambridge will not enter into discussions about these mark schemes.

Cambridge is publishing the mark schemes for the May/June 2016 series for most Cambridge IGCSE

®
,

Cambridge International A and AS Level components and some Cambridge O Level components.

Page 2 Mark Scheme Syllabus Paper

 Cambridge International AS/A Level – May/June 2016 9691 22

© Cambridge International Examinations 2016

1 [6]

String1 String2 Position Digit1 Digit2 Sum Carry Result

"011101" "001100" "0" ""

 6 "1" "0" "1" "1"

 5 "0" "0" "0" "01"

 4 "1" "1" "0" "1" "001"

 3 "1" "1" "1" "1001"

 2 "1" "0" "0" "01001"

 1 "0" "0" "1" "0" "101001"

1 mark for each of columns 3 to 8.

2 (a) (i) It calls itself in line 06 // Max [1]

In line 06 the function name is on the right hand side of the assignment expression

 (ii) Base case: 04 / 02 (1) [2]

General case: 06 (1)

 (b) (i) 1 [1]

 (ii) 3 [1]

2 (c) (i) The stopping condition / base case is never reached [2]

So the function keeps calling itself for ever

 (ii) IF Exponent < 0 (1) [2]

THEN

 Error (1)
ELSE …

Or:

– check for exponent less than 0 (1)
– send error code // write function to manage negative exponents. (1)

Page 3 Mark Scheme Syllabus Paper

 Cambridge International AS/A Level – May/June 2016 9691 22

© Cambridge International Examinations 2016

 (d) No marks for recursive solutions [4]

FUNCTION Power(Number : INTEGER, Exponent : INTEGER) RETURNS INTEGER

 Result ← 1

 IF Exponent > 0

 THEN

 FOR e ← 1 to Exponent

 Result ← Result * Number

 ENDFOR

 ENDIF

 RETURN Result

ENDFUNCTION

Alternative:

FUNCTION Power(Number : INTEGER, Exponent : INTEGER) RETURNS INTEGER

 Result ← 1

 IF Exponent > 0

 THEN

 e ← Exponent

 REPEAT

 Result ← Result * Number

 e ← e - 1

 UNTIL e = 0

 ENDIF

 RETURN Result

ENDFUNCTION

FUNCTION Power(Number : INTEGER, Exponent : INTEGER) RETURNS INTEGER

 Result ← 1

 e ← Exponent

 WHILE e > 0

 Result ← Result * Number

 e ← e - 1

 ENDWHILE

 RETURN Result

ENDFUNCTION

 (e) Iterative [2]

– iterative solution easier to write/debug
– smaller overheads (Max 1)

Recursive
– recursive solution elegant
– mathematically intuitive
– usually contains fewer lines (Max 1)

 (f) (i) – in the main program just before the function is called (1) [2]

– to then single-step the function code (1)

Page 4 Mark Scheme Syllabus Paper

 Cambridge International AS/A Level – May/June 2016 9691 22

© Cambridge International Examinations 2016

 (ii) – Result – this is the value to be returned at the end of each call (1) [2]

– Exponent – has a different value each time the function is called (1)

alternative marking:
– Result, Exponent
– these variables change in the program

 (iii) – from the breakpoint / set one breakpoint [3]

– step one instruction at a time
– inspecting the variable watch after each instruction

3 (a) (i) White: 0 [2]

Black: –1 / NULL
Accept any other appropriate integer value (e.g. White –1, Black 0)

 (ii) Example VB: [3]

DIM Puzzle(11,11) AS INTEGER

Example Python:

Puzzle = [[0 for i in range(12)] for j in range(12)]

Puzzle = [[0]*11]*11

Example Pascal:

VAR Puzzle : Array[1..11, 1..11] OF INTEGER;

Example C and C++:

int Puzzle[11][11];

Example C#:

int [11][11] Puzzle;

Mark as follows:
– correct identifier
– correct dimensions
– integer data type

Page 5 Mark Scheme Syllabus Paper

 Cambridge International AS/A Level – May/June 2016 9691 22

© Cambridge International Examinations 2016

 (iii) Example VB: [3]

FOR i = 1 TO 11

 FOR j = 1 TO 11

 Puzzle(i,j) = 0

 NEXT j

NEXT i

Example Python:
Puzzle = [[0 for i in range(12)] for j in range(12)]

Example Pascal:
FOR i := 1 TO 11 DO

 FOR j := 1 TO 11 DO

 Puzzle[i,j] := 0 ;

Example C++:
for (int i = 1; i <= 11; i++)

 for (int j = 1; j <=11; j++){

 Puzzle[i][j] = 0;}

Mark as follows:
– looping 11 times
– correctly nested inner loop
– correct assignment of array element with value for White (f.t.)

 (iv) Example VB: [2]

Puzzle(1,7) = -1

Example Python:

Puzzle[1][7] = -1

Example Pascal:

Puzzle[1,7] := -1;

Example C++:

Puzzle[1][7] = -1;

Mark as follows:
– identifier with indexes
– assignment of value for black

 (b) (i) CONSTANT WHITE = 0 // value from part(a)(i) (1) [2]

CONSTANT BLACK = −1 // value from part(a)(i) (1)

Page 6 Mark Scheme Syllabus Paper

 Cambridge International AS/A Level – May/June 2016 9691 22

© Cambridge International Examinations 2016

 (ii) Max [8]

PROCEDURE CheckForStartOfWord(Puzzle, ThisRow, ThisColumn,

 Across, Down)

 Across ← FALSE // will change to TRUE

 // if a word across starts in this square

 Down ← FALSE (1)

 IF Puzzle[ThisRow, ThisColumn] = WHITE (1)
 THEN // this square is white

 // check for sequence across

 IF ThisColumn < 11 // check not in last column

 THEN

 // check this is the first column or a black square to the left

 IF (ThisColumn = 1

 OR Puzzle[ThisRow, ThisColumn - 1] = BLACK)

 AND (Puzzle[ThisRow, ThisColumn + 1] = WHITE) (1)
 THEN

 Across ← TRUE

 ENDIF (1)
 ENDIF

 // check for sequence down

 IF ThisRow < 11 // check not in last row

 THEN

 // check this is the first row or a black square above

 IF (ThisRow = 1 (1)

 OR Puzzle[ThisRow - 1, ThisColumn] = BLACK) (1)
 // check that the square below is white

 AND (Puzzle[ThisRow + 1, ThisColumn] = WHITE) (1)
 THEN

 Down ← TRUE (1)
 ENDIF

 ENDIF

 ENDIF

ENDPROCEDURE

 (iii) [3]

Parameter By reference By value

Puzzle �
(1)

ThisRow �
(1)

ThisColumn �

Across �

(1)
Down �

Page 7 Mark Scheme Syllabus Paper

 Cambridge International AS/A Level – May/June 2016 9691 22

© Cambridge International Examinations 2016

 (c) Example VB: [8]

NextNumber = 1

a = 1

d = 1

FOR ThisRow = 1 TO 11 FOR ThisColumn = 1 TO 11

 CheckStartOfWord(ThisRow, ThisColumn, Across, Down)

 IF Across = TRUE THEN

 AcrossList(a) = NextNumber

 a = a + 1

 END IF

 IF Down = TRUE THEN

 DownList(d) = NextNumber

 d = d + 1

 END IF

 IF (Across = TRUE) OR (Down = TRUE) THEN

 Puzzle(ThisRow, ThisColumn) = NextNumber

 NextNumber = NextNumber + 1

 END IF

 NEXT ThisColumn

NEXT ThisRow

Example Python:
NextNumber = 1

a = 1

d = 1 (1)

for ThisRow in range(1, 12): (1)

 for ThisColumn in range(1,12): (1)
 CheckStartOfWord(ThisRow, ThisColumn, Across, Down)

 if Across: (1)
 AcrossList[a] = NextNumber

 a = a + 1

 if Down == True:

 DownList[d] = NextNumber

 d = d + 1

 if (Across == True) or (Down == True):

 Puzzle[ThisRow][ThisColumn] = NextNumber

 NextNumber = NextNumber + 1

Page 8 Mark Scheme Syllabus Paper

 Cambridge International AS/A Level – May/June 2016 9691 22

© Cambridge International Examinations 2016

Example Pascal: (1)
NextNumber := 1;

a := 1;

d := 1; (1)
FOR ThisRow := 1 TO 11 DO

 FOR ThisColumn := 1 TO 11 DO

 BEGIN (1)

 CheckStartOfWord(ThisRow, ThisColumn, Across, Down); (1)
 IF Across = TRUE

 THEN

 BEGIN

 AcrossList[a] := NextNumber;

 a := a + 1;

 END;

 IF Down = TRUE

 THEN

 BEGIN

 DownList[d] := NextNumber;

 d := d + 1;

 END;

 IF (Across = TRUE) OR (Down = TRUE)

 THEN

 BEGIN

 Puzzle[ThisRow, ThisColumn] := NextNumber;

 NextNumber := NextNumber + 1;

 END;

 END;

Mark as follows:
– all 3 initialisations
– outer loop correctly formed
– inner loop correctly nested
– procedure call with all parameters
– 3 IF statements, not nested

– assign NextNumber to AcrossList and DownList

– increment a, d, NextNumber

– assign NextNumber to Puzzle element

Page 9 Mark Scheme Syllabus Paper

 Cambridge International AS/A Level – May/June 2016 9691 22

© Cambridge International Examinations 2016

 (d) – constant declaration Max [4]
– meaningful identifiers/variable names
– modules // procedure calls
– use of parameters
– indentation
– capitalised variable names/identifiers
– upper case keywords // capitalisation of keywords
– annotation

 (e) Example VB.NET: Max [5]

SUB SavePuzzleToFile(Puzzle) (1)

 DIM FileWriter AS StreamWriter (1)

 DIM Row, Column AS INTEGER (1)

 FileWriter = New StreamWriter("Puzzle.TXT") (1)
 FOR Row = 1 TO 11

 FOR Column = 1 TO 11

 FileWriter.Write(Puzzle(Row, Column)) (1)
 NEXT Column

 FileWriter.WriteLine()

 NEXT Row (1)

 FileWriter.Close() (1)
END SUB

Example VB6:
Sub SavePuzzleToFile(Puzzle)

 Dim i as Integer

 Open "Puzzle.TXT" For Output As #1

 For i = 1 To 11

 For j = 1 TO 11

 Write #1, Puzzle(i,j)

 Next j

 Next i

 Close#1

End Sub

Example Python:
def SavePuzzleToFile(Puzzle) :

 PuzzleFile = open("Puzzle.TXT", "w")

 for i in range(1,12) :

 for j in range(1,12):

 PuzzleFile.write(str(Puzzle[i][j]))

 PuzzleFile.write("\n")

 PuzzleFile.close()

Page 10 Mark Scheme Syllabus Paper

 Cambridge International AS/A Level – May/June 2016 9691 22

© Cambridge International Examinations 2016

Example Pascal:
PROCEDURE SavePuzzleToFile(Puzzle); (1)
BEGIN

 VAR PuzzleFile : TEXTFILE;

 VAR Row, Column : INTEGER; (1)

 ASSIGNFILE (PuzzleFile, 'Puzzle.TXT'); (1)

 REWRITE (PuzzleFile); (1)
 FOR Row := 1 TO 11 DO

 FOR Column := 1 TO 11 DO (1)

 WRITE(PuzzleFile, Puzzle[Row, Column]); (1)

 CLOSEFILE(PuzzleFile); (1)
END;

Mark as follows:
– procedure heading and ending
– declaration of local variables
– assigning a file name
– open file for writing
– nested loop to access each array element
– write element out to file
– close file

 (f) Max [7]

FUNCTION CountSquaresAcross(Puzzle, ThisRow, ThisColumn) RETURNS

INTEGER

 DECLARE WordLength : INTEGER

 WordLength ← 2 // this was the minimum word length

 WHILE Puzzle[ThisRow, ThisColumn + WordLength] = WHITE

 AND (ThisColumn + WordLength) <= 11

 WordLength ← WordLength + 1

 ENDWHILE

 RETURN WordLength

ENDFUNCTION

Mark as follows:
– declaration of local variable
– initialise counter
– loop using WHILE or REPEAT

– increment counter
– check for white square
– check for right edge of puzzle
– return counter
– end function

