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1        [6] 
 

String1 String2 Position Digit1 Digit2 Sum Carry Result 

"011101" "001100"    "0" "" 

 6 "1" "0" "1"  "1" 

 5 "0" "0" "0"  "01" 

 4 "1" "1" "0" "1" "001" 

 3 "1" "1" "1"  "1001" 

 2 "1" "0" "0"  "01001" 

 1 "0" "0" "1" "0" "101001" 

 
1 mark for each of columns 3 to 8.  

 
 
2 (a) (i) It calls itself in line 06 // Max [1] 
 

In line 06 the function name is on the right hand side of the assignment expression 
 
  (ii) Base case: 04 / 02 (1) [2] 
 

General case: 06 (1) 
 
 
 (b) (i) 1 [1] 
 
  (ii) 3 [1] 
 
 
2 (c) (i) The stopping condition / base case is never reached [2] 
 

So the function keeps calling itself for ever 
 
  (ii) IF Exponent < 0  (1) [2] 

THEN 

 Error  (1) 
ELSE … 

 
Or: 
 
– check for exponent less than 0 (1) 
– send error code // write function to manage negative exponents. (1) 
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 (d) No marks for recursive solutions   [4] 
 

FUNCTION Power(Number : INTEGER, Exponent : INTEGER) RETURNS INTEGER 

   Result ← 1 

   IF Exponent > 0 

      THEN 

         FOR e ← 1 to Exponent 

            Result ← Result * Number 

         ENDFOR 

   ENDIF 

   RETURN Result 

ENDFUNCTION 

 

Alternative: 

FUNCTION Power(Number : INTEGER, Exponent : INTEGER) RETURNS INTEGER 

   Result ← 1 

   IF Exponent > 0 

      THEN 

         e ← Exponent 

         REPEAT 

            Result ← Result * Number 

            e ← e - 1 

        UNTIL e = 0 

   ENDIF 

   RETURN Result 

ENDFUNCTION 

 
FUNCTION Power(Number : INTEGER, Exponent : INTEGER) RETURNS INTEGER 

   Result ← 1 

   e ← Exponent 

   WHILE e > 0 

      Result ← Result * Number 

      e ← e - 1 

   ENDWHILE 

   RETURN Result 

ENDFUNCTION 

 
 
 (e) Iterative     [2] 

– iterative solution easier to write/debug 
– smaller overheads  (Max 1) 

 
Recursive 
– recursive solution elegant 
– mathematically intuitive 
– usually contains fewer lines  (Max 1) 

 
 
 (f) (i) – in the main program just before the function is called  (1) [2] 

 
– to then single-step the function code (1) 
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  (ii) – Result – this is the value to be returned at the end of each call (1) [2] 
 

– Exponent – has a different value each time the function is called (1) 
 
alternative marking: 
– Result, Exponent  
– these variables change in the program 
 

  (iii) – from the breakpoint / set one breakpoint  [3] 
 

– step one instruction at a time 
– inspecting the variable watch after each instruction 

 
 
3 (a) (i) White: 0 [2] 

Black: –1 / NULL 
Accept any other appropriate integer value (e.g. White –1, Black 0) 

 
  (ii) Example VB:  [3] 
 

DIM Puzzle(11,11) AS INTEGER 

 
Example Python:  
 
Puzzle = [[0 for i in range(12)] for j in range(12)] 

Puzzle = [[0]*11]*11 

 
Example Pascal: 
 
VAR Puzzle : Array[1..11, 1..11] OF INTEGER; 

 
Example C and C++:  
 
int Puzzle[11][11]; 

 
Example C#:  
 
int [11][11] Puzzle; 

 
Mark as follows: 
– correct identifier 
– correct dimensions 
– integer data type 
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  (iii) Example VB: [3] 
 

FOR i = 1 TO 11  

   FOR j = 1 TO 11  

      Puzzle(i,j) = 0  

   NEXT j 

NEXT i 

 
Example Python:  
Puzzle = [[0 for i in range(12)] for j in range(12)] 

 
Example Pascal: 
FOR i := 1 TO 11 DO 

 FOR j := 1 TO 11 DO 

  Puzzle[i,j] := 0 ; 

 
Example C++:  
for (int i = 1; i <= 11; i++) 

 for (int j = 1; j <=11; j++){ 

  Puzzle[i][j] = 0;} 

 
Mark as follows: 
– looping 11 times 
– correctly nested inner loop 
– correct assignment of array element with value for White (f.t.) 

 
 
  (iv) Example VB: [2] 
 

Puzzle(1,7) = -1 

 
Example Python:  
 
Puzzle[1][7] = -1 

 
Example Pascal: 
 
Puzzle[1,7] := -1; 

 
Example C++:  
 
Puzzle[1][7] = -1; 

 
Mark as follows: 
– identifier with indexes 
– assignment of value for black 

 
 
 (b) (i) CONSTANT WHITE = 0 // value from part(a)(i) (1) [2] 
 

CONSTANT BLACK = −1 // value from part(a)(i) (1) 
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  (ii)      Max [8] 
 
PROCEDURE CheckForStartOfWord(Puzzle, ThisRow, ThisColumn, 

                                                      Across, Down) 

   Across ← FALSE // will change to TRUE 

                  // if a word across starts in this square 

   Down ← FALSE   (1) 

   IF Puzzle[ThisRow, ThisColumn] = WHITE (1) 
      THEN   // this square is white 

         // check for sequence across 

         IF ThisColumn < 11  // check not in last column 

            THEN 

     // check this is the first column or a black square to the left 

               IF (ThisColumn = 1  

                  OR Puzzle[ThisRow, ThisColumn - 1] = BLACK) 

                  AND (Puzzle[ThisRow, ThisColumn + 1] = WHITE) (1) 
                  THEN 

                     Across ← TRUE 

               ENDIF  (1) 
         ENDIF 

         // check for sequence down 

         IF ThisRow < 11  // check not in last row 

            THEN 

               // check this is the first row or a black square above 

               IF (ThisRow = 1  (1) 

                  OR Puzzle[ThisRow - 1, ThisColumn] = BLACK) (1) 
                  // check that the square below is white 

                  AND (Puzzle[ThisRow + 1, ThisColumn] = WHITE) (1) 
                  THEN 

                     Down ← TRUE  (1) 
               ENDIF 

         ENDIF 

   ENDIF 

ENDPROCEDURE 

 
  (iii)  [3] 
 

Parameter By reference By value 

Puzzle �  
(1)

ThisRow  � 
(1)

ThisColumn  � 

Across �  

(1)
Down �  
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 (c) Example VB:   [8] 
 

NextNumber = 1 

a = 1 

d = 1 

FOR ThisRow = 1 TO 11    FOR ThisColumn = 1 TO 11  

       CheckStartOfWord(ThisRow, ThisColumn, Across, Down) 

       IF Across = TRUE THEN 

           AcrossList(a) = NextNumber 

           a = a + 1 

       END IF 

       IF Down = TRUE THEN 

           DownList(d) = NextNumber 

                  d = d + 1 

       END IF 

       IF (Across = TRUE) OR (Down = TRUE) THEN 

           Puzzle(ThisRow, ThisColumn) = NextNumber 

           NextNumber = NextNumber + 1 

       END IF 

   NEXT ThisColumn 

NEXT ThisRow  

 
Example Python: 
NextNumber = 1 

a = 1 

d = 1   (1) 

for ThisRow in range(1, 12):  (1) 

  for ThisColumn in range(1,12): (1) 
    CheckStartOfWord(ThisRow, ThisColumn, Across, Down) 

    if Across: (1) 
      AcrossList[a] = NextNumber 

      a = a + 1 

    if Down == True: 

      DownList[d] = NextNumber 

      d = d + 1 

    if (Across == True) or (Down == True): 

      Puzzle[ThisRow][ThisColumn] = NextNumber 

      NextNumber = NextNumber + 1 
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Example Pascal: (1) 
NextNumber := 1; 

a := 1; 

d := 1;  (1) 
FOR ThisRow := 1 TO 11 DO  

   FOR ThisColumn := 1 TO 11 DO 

      BEGIN (1) 

         CheckStartOfWord(ThisRow, ThisColumn, Across, Down); (1) 
         IF Across = TRUE 

            THEN 

               BEGIN 

                  AcrossList[a] := NextNumber; 

                  a := a + 1; 

               END; 

         IF Down = TRUE 

            THEN 

               BEGIN 

                  DownList[d] := NextNumber; 

                  d := d + 1; 

               END; 

         IF (Across = TRUE) OR (Down = TRUE) 

            THEN 

               BEGIN 

                  Puzzle[ThisRow, ThisColumn] := NextNumber; 

                  NextNumber := NextNumber + 1; 

               END; 

      END;  

 
Mark as follows: 
– all 3 initialisations 
– outer loop correctly formed 
– inner loop correctly nested 
– procedure call with all parameters 
– 3 IF statements, not nested 

– assign NextNumber to AcrossList and DownList 

– increment a, d, NextNumber 

– assign NextNumber to Puzzle element 

 

 
  



Page 9 Mark Scheme Syllabus Paper 

 Cambridge International AS/A Level – May/June 2016 9691 22 
 

 
© Cambridge International Examinations 2016 

 (d) – constant declaration   Max [4] 
– meaningful identifiers/variable names 
– modules // procedure calls 
– use of parameters 
– indentation  
– capitalised variable names/identifiers  
– upper case keywords  // capitalisation of keywords 
– annotation 

 
 
 (e) Example VB.NET:    Max [5] 

SUB SavePuzzleToFile(Puzzle)                             (1) 

   DIM FileWriter AS StreamWriter                        (1) 

   DIM Row, Column AS INTEGER                            (1) 

   FileWriter = New StreamWriter("Puzzle.TXT")           (1) 
   FOR Row = 1 TO 11  

      FOR Column = 1 TO 11  

         FileWriter.Write(Puzzle(Row, Column))           (1) 
      NEXT Column 

      FileWriter.WriteLine() 

   NEXT Row                                              (1) 

   FileWriter.Close()                                    (1) 
END SUB 

 
Example VB6: 
Sub SavePuzzleToFile(Puzzle) 

    Dim i as Integer 

    Open "Puzzle.TXT" For Output As #1 

    For i = 1 To 11 

        For j = 1 TO 11  

            Write #1, Puzzle(i,j) 

        Next j      

    Next i 

    Close#1 

End Sub 

 
Example Python: 
def SavePuzzleToFile(Puzzle) : 

    PuzzleFile = open("Puzzle.TXT", "w") 

    for i in range(1,12) : 

      for j in range(1,12): 

        PuzzleFile.write(str(Puzzle[i][j])) 

      PuzzleFile.write("\n") 

    PuzzleFile.close() 
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Example Pascal: 
PROCEDURE SavePuzzleToFile(Puzzle);                       (1) 
BEGIN 

   VAR PuzzleFile : TEXTFILE; 

   VAR Row, Column : INTEGER;                             (1) 

   ASSIGNFILE (PuzzleFile, 'Puzzle.TXT');                 (1) 

   REWRITE (PuzzleFile);                                  (1) 
   FOR Row := 1 TO 11 DO 

      FOR Column := 1 TO 11 DO                            (1) 

         WRITE(PuzzleFile, Puzzle[Row, Column]);          (1) 

   CLOSEFILE(PuzzleFile);                                 (1) 
END; 

 
Mark as follows: 
– procedure heading and ending 
– declaration of local variables 
– assigning a file name 
– open file for writing 
– nested loop to access each array element 
– write element out to file 
– close file 

 
 
 (f)       Max [7] 

FUNCTION CountSquaresAcross(Puzzle, ThisRow, ThisColumn) RETURNS 

INTEGER 

   DECLARE WordLength : INTEGER 

   WordLength ← 2  // this was the minimum word length 

   WHILE Puzzle[ThisRow, ThisColumn + WordLength] = WHITE 

                            AND (ThisColumn + WordLength) <= 11 

      WordLength ← WordLength + 1 

   ENDWHILE 

   RETURN WordLength 

ENDFUNCTION 

 
Mark as follows: 
– declaration of local variable 
– initialise counter 
– loop using WHILE or REPEAT 

– increment counter  
– check for white square 
– check for right edge of puzzle 
– return counter 
– end function 


