CAMBRIDGE INTERNATIONAL EXAMINATIONS

Cambridge International Advanced Level

MARK SCHEME for the October/November 2015 series

9691 COMPUTING

9691/32

Paper 3 (Written Paper), maximum raw mark 90

This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began, which would have considered the acceptability of alternative answers.

Mark schemes should be read in conjunction with the question paper and the Principal Examiner Report for Teachers.

Cambridge will not enter into discussions about these mark schemes.

Cambridge is publishing the mark schemes for the October/November 2015 series for most Cambridge IGCSE[®], Cambridge International A and AS Level components and some Cambridge O Level components.

Page 2		2	Mark Scheme	Syllabus	Paper	
			Cambridge International A Level – October/November	r 2015	9691	32
1	(a)		MBER (MemberID, - any two sensible attributes e.g. nar JRSE - CourseID, Instrument, StartDate, Dura Cour			[1] [1]
	(b)	Cor Cor	JRSE-MEMBER (CourseID, MemberID) rect two attributes rect primary key ourseName used - refer back to part (a) for possible FT			1 1 [2]
	(c)		e table has a repeated <u>attribute</u> // ere are several Instruments for the same TutorID			[1]
	(d)	(i)	TUTOR - has primary key TutorID TUTOR-INSTRUMENT - has primary key TutorID + Ir	strumen	t	[1] [1]
		(ii)	Many-to-one // M:1 // ∞ : 1			[1]
		(iii)	SELECT TutorID can be reverse for FROM TUTOR-INSTRUMENT WHERE Instrument = 'saxophone'			[1] [1] [1]
			'saxophone' – allow mixed case / spelling must be correct Quotes must be present	t		
		(iv)			1	
			Creates a new record in the TUTOR-INSTRUMENT table	FALSE	}	[1]
			Amends an existing record in the TUTOR-INSTRUMENT table	TRUE	J	
			Assigns the INSTRUMENT attribute the value 'guitar'	FALSE]	[1]
			Assigns the INSTRUMENT attribute the value 'Piano'	FALSE		
			Make a change to all the existing records for all tutors	FALSE		[1]
			Changes one record in the TUTOR table	FALSE		

Page 3			Mark Scheme	Syllabus	Paper
		Cambridge Inter	national A Level – October/November 2015	9691	32
(e) (i)		INSERT INTO T	UTOR-INSTRUMENT		1
		VALUES (57, '	L L		1 [2]
	(ii)	•	record in TUTOR-INSTRUMENT table		1
		But, no correspor Or:	ding TutorID in the TUTOR table		1
		// Delete a record	in the TUTOR table		1
		and, matching red Or:	cords in TUTOR-INSTRUMENT table remain		1
			e term 'update' if mentions a change to TutorID/f	oreign key	1 [may 0]
		allribute			1 [max 2]
2 (a)	(i)	(0) 101 1010			[1]
	(ii)	5A			[1]
(iii)	8			[1]
(b)	(b)			_	
	F	Register transfer notation	Description		
	MAR ← [PC]		The contents of the Program Counter are copied to the Memory Address Register.		[1]
	PC ← [PC] + 1		(The Contents of) the <u>Program Counter</u> are incremented		[1]

The Memory Address Register contains an

the Memory Data Register.

Instruction Register

address. Copy the contents of this address to

Copy the contents/data in/instruction in the

Memory Data Register to the Current

[1]

[1]

MDR ← [[MAR]]

CIR ← [MDR]

Page 4	Mark Scheme	Syllabus	Pape	r
	Cambridge International A Level – October/November 2015	9691	32	
(c) (Sends control signals (A. commands) from/to the processor and vadevices // individual lines are each dedicated to a particular signal timing signals to coordinate various actions		1	
	Examples: Timing signal // reset // memory write/read // I/O operation complete interrupt	ed //	1	[2]
(,	d tha	1	
	Connects/used to transport a data value between main memory an processor // data bus is bi-directional	iu irie	1	

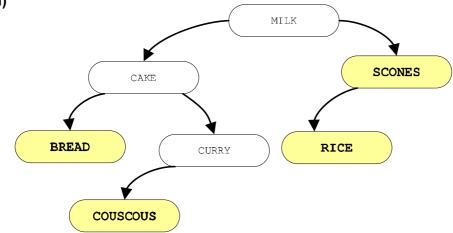
Carries the memory address about to be accessed // it connects the Memory Address Register to main memory // Address bus is uni-directional from the

1

1

[4]

3 (a) Address bus


processor

	Register			
Instruction	ACC	Index Register (IX)		
LIX 902		2		
LDD 901	917			
LDI 901	13			
LDX 901	25			

(b) Use the text editor to create the assembly language program PROG.ASM Can be PROG.ASM is input to the assembler software [1] reverse for IF errors reported [1] 1 mark THEN Amend PROG.ASM using the text editor [1] ENDIF [1] UNTIL No errors reported [1] Produce the PROG.EXE executable file Execute PROG.EXE

Page 5	Mark Scheme	Syllabus	Paper
	Cambridge International A Level – October/November 2015	9691	32

4 (a) (i)

[4]

[4]

(ii)	Root labelled	[1]
	Right subtree labelled // FT for their tree	[1]

(iii) 3 // FT for their tree [1]

(b)

0						
1			MELON			2
3			BEETROOT			
4			TURNIP			
			APPLE			
			PARSNIP			5
6			SWEDE			
			QUINCE			
	3 4	3 4	3 4	3 BEETROOT 4 TURNIP APPLE PARSNIP 6 SWEDE	3 BEETROOT 4 TURNIP APPLE PARSNIP 6 SWEDE	3 BEETROOT 4 TURNIP APPLE PARSNIP 6 SWEDE

Mark as follows:

Root showing 0	1
Data values in correct positions	1
Correct left pointers	1
Correct right pointers	1

Ignore values showing any unassigned pointers

Page 6	Mark Scheme	Syllabus	Paper	
	Cambridge International A Level – October/November 2015	9691	32	

(c) (i) //binary tree search

INPUT SearchFood

IsFound ← FALSE [1]

Current ← RootPtr [1]

REPEAT

IF Food[Current] = SearchFood [1]

THEN

//found

OUTPUT "Found"

 $ISFound \leftarrow TRUE$ [1]

ELSE

IF SearchFood < Food[Current]</pre>

THEN

// move left

Current ← LeftPtr[Current]

ELSE

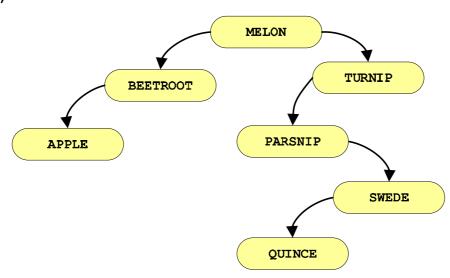
Current ← RightPtr[Current] [1]

ENDIF

ENDIF

UNTIL IsFound = TRUE OR

Current = 0/Null/-1/Unassigned [1]


IF IsFound = FALSE

THEN

OUTPUT SearchFood, "Not Found"

ENDIF

(d) (i)

Mark as follows:

Left subtree 1
Right subtree 1 [2]

(ii) Correct conclusion is made from 'their' tree [1]

Page 7	Mark Scheme	Syllabus	Paper
	Cambridge International A Level – October/November 2015	9691	32

5

(a) (i) Building a model of the system/real-life situation // Models the behaviour of the system R. 'imitates' The simulation records the result of some changing parameters/conditions/ circumstances 1 [2] 1 (ii) A computer program can be written to build the model Computer system can process results very quickly/can change the time frame // can process large volumes of data 1 Computer avoids any health and safety issues 1 [max 1] **(b)** (Current) traffic flows between Town A and Town B 1 Usage of the road(s) by pedestrians 1 Number of houses to be built 1 Number of vehicles per house 1 [max 2] (c) (i) BEWARE : NOT traffic lane changes (given in the rubric) Width of the road 1 Time interval between traffic signal changes 1 Signal changes activated by sensors Rate of arrival of vehicles // vehicle speed Variation in the type of vehicle using the junction Left/right filter used 1 Time of day 1 Weather conditions Outside influences e.g. zebra crossings 1 [max 2] (ii) Queue length Waiting time Vehicle throughput to/from Housing development to Town A/Town B 1 [max 1]

Р	age (8	Mark Scheme	Syllabus	Paper
	/a\	/:\	Cambridge International A Level – October/November 2015	9691	32
6	(a)	(i)			[1]
		(ii)			[1]
		(iii)	ERROR		[1]
		(iv)	0		[1]
		(v)	ERROR		[1]
	(b)	(i)	A – Parameter identifiers labelled B – (RETURNS) INTEGER		1 1 [2]
		(ii)	RejectCount ← CountBig 1 mark (Rejects, 83, 'Y') 1 mark		
			or		
			RejectCount ← CountBig (Rejects, 82, 'N') 1 mark 1 mark		[2]
	(c)	FUI	NCTION StringFound (ThisArray : ARRAY OF STRING , ThisValue : STRING) : BOOLEAN		
		FUI Th:	rk as follows: NCTION StringFound(isArray : ARRAY OF STRING isValue : STRING TURNS BOOLEAN // : BOOLEAN		1 1 1 1 [4]
7	(a)		umber of <u>connected</u> (allow: 'linked') computers/devices ed in a small geographical area // room/building/site		1 1 [2]
	(b)	(i)	Network Interface card // NIC		[1]
		(ii)	(Use of user IDs and) passwords // use of biometrics/by example Firewall // Proxy server		1 1 [2]
	(c)		rage/Management of all user data/files nagement of centrally stored software		1
			anting of access rights/permissions to various users e: refuse just mention of 'security'		1
		Ма	aring of peripherals // Control of all output to a printer device nagement of user accounts/Log-ons cording/Monitoring the use of the network // Accounting		1 1 1 [max 3]
	(d)	(Fil	e) server // Network attached storage (NAS)		[1]