

Cambridge International Examinations

Cambridge International Advanced Subsidiary and Advanced Level

CHEMISTRY 9701/22

Paper 2 AS Level Structured Questions

March 2017

MARK SCHEME

Maximum Mark: 60

This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began, which would have considered the acceptability of alternative answers.

Published

Mark schemes should be read in conjunction with the question paper and the Principal Examiner Report for Teachers.

Cambridge will not enter into discussions about these mark schemes.

Cambridge is publishing the mark schemes for the March 2017 series for most Cambridge IGCSE[®], Cambridge International A and AS Level components and some Cambridge O Level components.

® IGCSE is a registered trademark.

Question	Answer				Marks			
1(a)(i)	max O.N.	+1	(+)2	(+)3	(+)5	(+)6	+7	1
1(a)(ii)	(from Na to	Cl) nuclea	ar charge	increases				1
	electrons a	re in the sa	me shell/	have same	shielding			1
	greater/str	onger attra	ction (of e	electrons to	nucleus)			1
1(a)(iii)	Mg ²⁺ AND S ²⁻				1			
	ion of Mg/I	Mg ²⁺ has o	ne fewer s	shell (than ic	on of S/S ²⁻)		1
1(b)(i)	$P_4 + 5O_2 \rightarrow P_4O_{10}/2P_2O_5$				1			
1(b)(ii)	• whi		colour (of	chlorine gas	s) disappea	rs		2
1(b)(iii)	phosphoric	(V) acid						1
1(c)(i)				gement of (p		s		1 1
1(c)(ii)	• elec	n melting/b ctrical/theri d/rigid	nal insula	olimation po tor emperature				2

© UCLES 2017 Page 2 of 5

Question	Answer	Marks
1(c)(iii)	M1 % abundance of fourth isotope = 100 - (0.185 + 0.251 + 88.450) = 11.114	1
	M2 (0.185×135.907)+(0.251×137.906)+(88.450×139.905)+(11.114×RIM) 100 = 140.116	1
	∴ (140.116 × 100) – 12434.35 = 1577.246 = 11.114 × RIM	
	$RIM = \frac{1577.246}{11.114} = 141.915$	1

Question	Answer	Marks
2(a)(i)	bond in which the centres of positive and negative charges do not coincide OR electron distribution is asymmetric/unequal OR two (bonded) atoms are partially charged	1
2(a)(ii)	HF has the strongest (permanent) dipole–dipole/van der Waals' (forces)/HF has hydrogen bonding	1
	requires more energy to overcome (than weaker (permanent) dipole–dipole/ van der Waals' forces between other hydrogen halides)	1
2(a)(iii)	thermal stability of the hydrogen halides decreases down group (17)	1
	larger (halogen) atoms/atomic radius (down group) / increased shielding	1
	bond energies decrease/less energy required to break H–X	1
2(b)(i)	M1 base is Cl^- AND conjugate acid is HCl OR base is HSO_4^- AND conjugate acid is H_2SO_4	1
	$M2$ $Cl^-/HSO_4^-/base$ is a proton acceptor OR $HCl/H_2SO_4/(conjugate)$ acid has one more H^+	1
2(b)(ii)	H ₂ SO ₄ is (too strong) an oxidising agent	1
	I_2 would be formed instead	1

© UCLES 2017 Page 3 of 5

Question			Answer			Marks
2(c)(i)	$\Delta_r H = \Delta_r H\{\text{products}\} - \Delta_r H\{\text{reactants}\} = 2 \times (-242) - 4 \times (-92)$					
	= -116 (sign AND answer)					
2(c)(ii)	heterogeneous (catalyst)					
	provides an alternative reaction pathway of lower activation energy					
2(c)(iii)	reaction is exoth	ermic				1
	(increased temperature) shifts equilibrium to the left AND decreases yield of products (Cl_2 and/or H_2O)/less product formed					1
2(c)(iv)		HC1	O ₂	Cl_2	H ₂ O	3
	initial number of moles	1.60	0.500	0	0	
	M1 eqm number of moles	1.60 - 2 × 0.600 = 0.400	0.500 - ½ × 0.600 = 0.200	0.600	0.600	
	M2 mole fraction			<u>0.600</u> 1.80		
	M3 partial pressure			$\frac{0.600}{1.80} \times p_{\text{tot}} = 5.00 \times 10^4$		
2(c)(v)	$K_p = \frac{\left(3.6 \times 10^4\right)^2 \times \left(3.6 \times 10^4\right)^2}{\left(4.8 \times 10^4\right)^4 \times 3.0 \times 10^4} = 1.05 \times 10^{-5}$					1
	units = Pa ⁻¹					1
2(c)(vi)	K _p would not cha	ange				1

Question	Answer		
3(a)(i)	N=C-H H-C-H H-C-H H-C-H	1	
3(a)(ii)	reaction 1 = HCl(aq)	1	
	reaction 2 = (conc.) NaOH/KOH AND ethanol	1	

© UCLES 2017 Page 4 of 5

Question	Answer	Marks
3(a)(iii)	C–C backbone with dangling bonds rest of structure	1 1
3(b)	Ione pair on O AND curly arrow from O to C of C–Br dipole on C–Br AND curly arrow from C–Br to Br product (butan-1-ol)	1 1 1
3(c)(i)	(electrophilic) addition	1
3(c)(ii)	S has CH ₃ CHOH OR methyl/CH ₃ group next to CHOH	1
3(c)(iii)	positive inductive effect of more alkyl groups/more alkyl groups donate electron density	1
	secondary carbocation/secondary intermediate is more stable (than primary)	1
3(c)(iv)	S = OH	1
	T = HO	1
	U =	1
3(c)(v)	CH ₃ CHOHCH ₂ CH ₃ + [O] → CH ₃ COCH ₂ CH ₃ + H ₂ O	1
3(d)(i)	methyl pentanoate	1
3(d)(ii)	(compound V is) spectrum X	1
	spectra X and Z show a C=O (stretch) at 1730 (cm ⁻¹)	1
	spectra Y and Z show O–H (stretches) above 2500 (cm ⁻¹)	1
	V has a C=O (bond) and no O–H (bond)	1

© UCLES 2017 Page 5 of 5