

Cambridge International Examinations

Cambridge International Advanced Subsidiary and Advanced Level

CANDIDATE NAME								
CENTRE NUMBER						CANDIDATE NUMBER		
CHEMISTRY								9701/3
Paper 3 Advance	ced Pra	ctical Skills	s 2				May/Ju	ne 201
								2 hours
Candidates answ	wer on t	he Questi	on Pape	r.				
Additional Mater	rials:	As listed	in the C	Confidential I	nstructions			

READ THESE INSTRUCTIONS FIRST

Write your Centre number, candidate number and name on all the work you hand in.

Give details of the practical session and laboratory where appropriate, in the boxes provided.

Write in dark blue or black pen.

You may use an HB pencil for any diagrams or graphs.

Do not use staples, paper clips, glue or correction fluid.

DO NOT WRITE IN ANY BARCODES.

Answer all questions.

Electronic calculators may be used.

You may lose marks if you do not show your working or if you do not use appropriate units.

Use of a Data Booklet is unnecessary.

Qualitative Analysis Notes are printed on pages 11 and 12.

At the end of the examination, fasten all your work securely together. The number of marks is given in brackets [] at the end of each question or part question.

Session
Laboratory

For Examiner's Use			
1			
2			
3			
Total			

This document consists of 12 printed pages.

1 You are to determine the percentage of calcium carbonate in a sample of crushed limestone. You will first react a known mass of the crushed limestone in a known amount of hydrochloric acid, HCl(aq), to make a solution. You may assume that only the calcium carbonate present in the sample will react with the acid.

$$CaCO_3(s) + 2HCl(aq) \rightarrow CaCl_2(aq) + H_2O(I) + CO_2(g)$$

The amount of acid that did not react with the carbonate is then found by a titration using sodium hydroxide. You may assume that no compounds present in the limestone will react with the sodium hydroxide.

$$NaOH(aq) + HCl(aq) \rightarrow NaCl(aq) + H_2O(l)$$

FB 1 is crushed limestone, impure calcium carbonate.

FB 2 is 2.0 mol dm⁻³ hydrochloric acid, HC*l*.

FB 4 is 0.20 mol dm⁻³ sodium hydroxide, NaOH. methyl orange indicator

(a) Method

Read through the method before starting any practical work.

Making the solution

- Weigh the container with the limestone, **FB 1**, and record the mass below.
- Tip all the solid **FB 1** into a 250 cm³ beaker.
- Reweigh the container and record the mass.
- Fill the burette with **FB 2**.
- Slowly run between 47.5 and 48.5 cm³ of **FB 2** into the beaker containing **FB 1**.
- Record, in the space below, both your burette readings and the volume of **FB 2** added.
- Stir the mixture carefully until all the solid has reacted.
- Transfer the contents of the beaker into the volumetric flask.
- Rinse the beaker with distilled water and add it to the volumetric flask. Make the solution up to 250 cm³ with distilled water and mix thoroughly. This is solution **FB 3**.

•	Empty	and	rinse	the	burette	with	distilled	water
•	LITIPLY	anu	111130	uic	Duicile	VVILII	uistilleu	watci

- Fill the burette with **FB 3** from the volumetric flask.
- Pipette 25.0 cm³ of **FB 4** into a conical flask.
- Add a few drops of methyl orange indicator.
- Perform a rough titration and record your burette readings in the space below.

The rough	titre	is	 cm ³
THE TOUGH	uuc	13	 OHIL

- Carry out as many accurate titrations as you think necessary to obtain consistent results.
- Make certain any recorded results show the precision of your practical work.
- Record, in a suitable form below, all of your burette readings and the volume of FB 3 added in each accurate titration.

I	
II	
III	
IV	
V	
VI	
VII	
VIII	
IX	

[9]

(b) From your accurate titration results, obtain a suitable value to be used in your calculations. Show clearly how you have obtained this value.

25.0 cm³ of **FB 4** required cm³ of **FB 3**. [1]

1	(C)		Ca	lc	ul	a	fi	ΩI	n	c
l	C	, ,	Ja	IL	u	а	u	U	Ш	3

Show your working and appropriate significant figures in the final answer to **each** step of your calculations.

(i) Calculate the number of moles of sodium hydroxide present in 25.0 cm³ of FB 4.

moles of NaOH = mol

(ii) Hence state the number of moles of hydrochloric acid present in the volume of **FB 3** calculated in **(b)**.

moles of $HCl = \dots mol$

(iii) Use your answer to (ii) to calculate the number of moles of hydrochloric acid present in 250 cm³ of **FB 3**.

moles of HCl in 250 cm³ of **FB 3** = mol

(iv) Calculate the number of moles of hydrochloric acid, FB 2, added to FB 1 in (a).

moles of HCl added to **FB 1** = mol

(v) Use your answers to (iii) and (iv) to calculate the number of moles of hydrochloric acid that reacted with the calcium carbonate in **FB 1**.

1	
II	
III	
IV	
V	

moles of HCl reacted with CaCO₃ = mol

(vi) Calculate the number of moles of calcium carbonate present in your sample of FB 1.

moles of CaCO₃ = mol

(vii)	From your answer to (vi) and the mass of FB 1 used in (a) , calculate the percentage by mass of calcium carbonate in the limestone. [A_r : C, 12.0; O, 16.0; Ca, 40.1]
	percentage of calcium carbonate = % [7]
(d) (i)	The maximum error in a single burette reading is $\pm 0.05\text{cm}^3$. Student X, carrying out this experiment, recorded that 48.50cm^3 of FB 2 was added to FB 1 . What are the smallest and largest possible volumes of FB 2 that were added?
	smallest volume used = cm ³
	largest volume used = cm ³
(ii)	Student Y used an identical mass of FB 1 but added 47.70 cm ³ of FB 2 . How would the value obtained in (b) by student X compare with the value obtained by student Y? Explain your answer.
	[3]
	[Total: 20]
	[1044 20]

2 You are to determine the percentage by mass of calcium carbonate in another sample of the limestone by thermal decomposition. You may assume that none of the other compounds in the limestone sample is affected by heating. The equation for the reaction that occurs is given below.

$$CaCO_3(s) \rightarrow CaO(s) + CO_2(g)$$

FB 5 is crushed limestone, impure calcium carbonate.

(a) Method

Read through the method **before** starting any practical work and prepare a table for your results in the space below.

- Weigh the empty crucible and record the mass in your table.
- Transfer all the FB 5 into the crucible.
- Weigh the crucible with FB 5 and record the mass.
- Place the crucible on the pipe-clay triangle.
- Heat the crucible gently for about one minute and then strongly for three minutes.
- Remove the Bunsen burner and allow the crucible to cool.
- While the crucible is cooling start working on another question.
- Reweigh the cooled crucible with contents and record the mass.
- Reheat the crucible strongly for three minutes, cool and reweigh. Record the mass.
- Record the mass of FB 5 used and the mass of solid remaining after the second heating.

(b)	Calculations
	Show your working and appropriate significant figures in the final answer to each step of your calculations.

cald	culations.
(i)	From your results in (a) , calculate the total mass of carbon dioxide lost on heating FB 5 .
	mass of CO ₂ lost = g
(ii)	Use your answer to (i) to calculate the mass of calcium carbonate present in the sample of FB 5 heated. [A_r : C, 12.0; O, 16.0; Ca, 40.1]
	mass of CaCO ₃ = g
(iii)	Calculate the percentage by mass of calcium carbonate in the limestone.
	percentage of calcium carbonate = % [3]
	5 and FB 1 are samples of the same limestone. You have determined the percentage of cium carbonate in both Questions 1 and 2 using two different procedures.
(i)	Which procedure is the less accurate? Explain your answer.
(ii)	Suggest a change to the less accurate practical procedure that would improve the accuracy and explain your answer.
	[2]

[Total: 7]

3 Qualitative Analysis

At each stage of any test you are to record details of the following.

- colour changes seen
- the formation of any precipitate
- the solubility of such precipitates in an excess of the reagent added

Where gases are released they should be identified by a test, **described in the appropriate place in your observations**.

You should indicate clearly at what stage in a test a change occurs. Marks are **not** given for chemical equations.

No additional tests for ions present should be attempted.

If any solution is warmed, a boiling tube MUST be used.

Rinse and reuse test-tubes and boiling tubes where possible.

Where reagents are selected for use in a test, the name or correct formula of the element or compound must be given.

(a) A different sample of limestone was reacted with dilute nitric acid to give solution **FB 6**. This sample of limestone contained calcium carbonate, CaCO₃, and one other salt. This additional salt contains a single cation and a single anion from those listed on pages 11 and 12. By carrying out the following tests you will be able to suggest identities of the additional ions.

	test	observations
(i)	To a 1 cm depth of FB 6 in a test-tube add aqueous ammonia.	
(ii)	To a 1 cm depth of FB 6 in a test-tube add a 1 cm depth of aqueous silver nitrate.	
(iii)	To a 1 cm depth of FB 6 in a test-tube add a 1 cm depth of aqueous barium chloride or barium nitrate.	

(iv) Suggest all possible identities for the ions present in **FB 6**, apart from Ca^{2+} and NO_3^- .

	test	ob	servations		conclusion			
	To a 1 cm depth of FB 6 in a test-tube add							
					I			
					II			
					III			
					IV			
					IV			
	are provided with a solid, I		arrying out the	e following te	V VI	able		
	tify three of the ions present		arrying out the		V VI ests you will be a	able		
den	tify three of the ions present test	in FB 7 .	arrying out the	e following to observa	V VI ests you will be a	able		
	tify three of the ions present	of FB 7 in	arrying out the		V VI ests you will be a	able		
den	tify three of the ions present test Place a spatula measure of a hard-glass test-tube. Hear	of FB 7 in t gently at	arrying out the		V VI ests you will be a	able		

	test	observations
(ii)	Place a spatula measure of FB 7 in a test-tube.	
	Add about a 5 cm depth of dilute nitric acid.	
	You will use the solution formed for tests (iii) to (\mathbf{v}).	
(iii)	To a 1cm depth of the solution in a test-tube add a few drops of aqueous potassium manganate(VII), then	
	add a few drops of starch solution.	
(iv)	To a 1 cm depth of the solution in a test-tube add a few drops of aqueous silver nitrate.	
(v)	To a 1 cm depth of the solution in a test-tube add aqueous ammonia.	

Use the	Qualitative	Analysis	Notes or	n pages	11	and	12 to	identify	three	of the	ions	present

[Total: 13]

[7]

Π

III

IV

V

VI

VII

Qualitative Analysis Notes

Key: [ppt. = precipitate]

1 Reactions of aqueous cations

	reac	tion with		
ion	NaOH(aq)	NH ₃ (aq)		
aluminium, A <i>l</i> ³+(aq)	white ppt. soluble in excess	white ppt. insoluble in excess		
ammonium, NH ₄ +(aq)	no ppt. ammonia produced on heating	_		
barium, Ba ²⁺ (aq)	no ppt. (if reagents are pure)	no ppt.		
calcium, Ca ²⁺ (aq)	white ppt. with high [Ca ²⁺ (aq)]	no ppt.		
chromium(III), Cr³+(aq)	grey-green ppt. soluble in excess giving dark green solution	grey-green ppt. insoluble in excess		
copper(II), Cu ²⁺ (aq)	pale blue ppt. insoluble in excess	blue ppt. soluble in excess giving dark blue solution		
iron(II), Fe ²⁺ (aq)	green ppt. turning brown on contact with air insoluble in excess	green ppt. turning brown on contact with air insoluble in excess		
iron(III), Fe³+(aq)	red-brown ppt. insoluble in excess	red-brown ppt. insoluble in excess		
magnesium, Mg²+(aq)	white ppt. insoluble in excess	white ppt. insoluble in excess		
manganese(II), Mn²+(aq)	off-white ppt. rapidly turning brown on contact with air insoluble in excess	off-white ppt. rapidly turning brown on contact with air insoluble in excess		
zinc, Zn²+(aq)	white ppt. soluble in excess	white ppt. soluble in excess		

2 Reactions of anions

ion	reaction
carbonate, CO ₃ ²⁻	CO ₂ liberated by dilute acids
chloride, C <i>l</i> ⁻ (aq)	gives white ppt. with Ag ⁺ (aq) (soluble in NH ₃ (aq));
bromide, Br ⁻ (aq)	gives cream ppt. with Ag ⁺ (aq) (partially soluble in NH ₃ (aq));
iodide, I ⁻ (aq)	gives yellow ppt. with Ag ⁺ (aq) (insoluble in NH ₃ (aq));
nitrate, NO ₃ ⁻ (aq)	NH ₃ liberated on heating with OH ⁻ (aq) and A <i>l</i> foil
nitrite, NO ₂ ⁻ (aq)	NH_3 liberated on heating with $OH^-(aq)$ and Al foil; NO liberated by dilute acids (colourless $NO \rightarrow$ (pale) brown NO_2 in air)
sulfate, SO ₄ ²⁻ (aq)	gives white ppt. with Ba ²⁺ (aq) (insoluble in excess dilute strong acids)
sulfite, SO ₃ ²⁻ (aq)	SO ₂ liberated with dilute acids; gives white ppt. with Ba ²⁺ (aq) (soluble in excess dilute strong acids)

3 Tests for gases

gas	test and test result			
ammonia, NH ₃	turns damp red litmus paper blue			
carbon dioxide, CO ₂ gives a white ppt. with limewater (ppt. dissolves with excess CO ₂)				
chlorine, Cl ₂	bleaches damp litmus paper			
hydrogen, H ₂	"pops" with a lighted splint			
oxygen, O ₂	relights a glowing splint			
sulfur dioxide, SO ₂	turns acidified aqueous potassium manganate(VII) from purple to colourless			

Permission to reproduce items where third-party owned material protected by copyright is included has been sought and cleared where possible. Every reasonable effort has been made by the publisher (UCLES) to trace copyright holders, but if any items requiring clearance have unwittingly been included the publisher will be pleased to make amends at the earliest possible opportunity.

Cambridge International Examinations is part of the Cambridge Assessment Group. Cambridge Assessment is the brand name of University of Cambridge Local Examinations Syndicate (UCLES), which is itself a department of the University of Cambridge.