MARK SCHEME for the May/June 2015 series

9701 CHEMISTRY

9701/22

Paper 2 (Structured Questions AS Core), maximum raw mark 60

This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began, which would have considered the acceptability of alternative answers.

Mark schemes should be read in conjunction with the question paper and the Principal Examiner Report for Teachers.

Cambridge will not enter into discussions about these mark schemes.

Cambridge is publishing the mark schemes for the May/June 2015 series for most Cambridge IGCSE[®], Cambridge International A and AS Level components and some Cambridge O Level components.

® IGCSE is the registered trademark of Cambridge International Examinations.

Page 2	Mark Scheme Cambridge International AS/A Level – May/June 2015	Syllabus 9701	Pap 22	
Question Mark Scheme			Mark	Total
1 (a)	name of particle relative mass relative charge			
.,	proton 1 +1		[1]	
	electron 1/1836 –1		[1]	
	neutron 1 0		[1]	[3]
(b) (i)	Mass of an atom(s)		[1]	
	relative to 1/12 th (the mass) of (an atom of) carbon-12 OR relative to carbon-12 which is (exactly) 12		[1]	[2]
(ii)	% of third isotope = 10		[1]	
	$\frac{(24 \times 79) + (26 \times 11.0) + 10x}{100} = 24.3$		[1]	
	10x = 248			
	x = 24.8 (3s.f.)		[1]	[3]
(c) (i)	anode $2Cl^- \rightarrow Cl_2 + 2e^-$ cathode $Mg^{2+} + 2e^- \rightarrow Mg$		[1] [1]	[2]
(ii)	$\begin{array}{cccccccccccccccccccccccccccccccccccc$		[1]	
	1.30 1.30 1.31 1.30 = 1:1:1:1			
	MgOHC1		[1]	[2]
(d) (i)	Na ₂ O basic/alkaline; Al_2O_3 amphoteric/acidic and basic; SO ₃ acidic Na ₂ O (giant) ionic AND SO ₃ (simple/molecular) covalent		[1] [1]	[2]
(ii)	$Na_2O + 2HCl \rightarrow 2NaCl + H_2O$		[1]	
	$Al_2O_3 + 6HCl \rightarrow 2AlCl_3 + 3H_2O$		[1]	
	$\begin{array}{l} Al_2O_3 + 2NaOH + 7H_2O \rightarrow 2NaAl(OH)_4(H_2O)_2 \text{ OR} \\ Al_2O_3 + 2NaOH + 3H_2O \rightarrow 2NaAl(OH)_4 \text{ OR} \\ Al_2O_3 + 2NaOH \rightarrow 2NaAlO_2 + H_2O \text{ OR} \\ Al_2O_3 + 2OH^- + 7H_2O \rightarrow 2[Al(OH)_4(H_2O)_2]^- \text{ OR} \\ Al_2O_3 + 2OH^- + 3H_2O \rightarrow 2[Al(OH)_4]^- \text{ OR} \\ Al_2O_3 + 2OH^- + 3H_2O \rightarrow 2[Al(OH)_4]^- \text{ OR} \\ Al_2O_3 + 2OH^- \rightarrow 2AlO_2^- + H_2O \end{array}$		[1]	
	SO ₃ + NaOH → NaHSO ₄ OR SO ₃ + 2NaOH → Na ₂ SO ₄ + H ₂ O		[1]	[4]

Page 3	Mark Scheme	Syllabus	Paper
	Cambridge International AS/A Level – May/June 2015	9701	22

Q	uestion	Mark Scheme	Mark	Total
				[18]
2	(a) (i)	$2PbS + 3O_2 \rightarrow 2PbO + 2SO_2$ reagents and formulae balancing	[1] [1]	[2]
	(ii)	S (is oxidised) –2 to (+)4 O (is reduced) 0 to –2	[1] [1]	[2]
	(b) (i)	T = 400 – 600 °C (chosen as a compromise because) High T increases rate ora High T decreases yield/moves eqm left/makes less SO ₃ as forward reaction exothermic ora	[1] [1] [1]	[3]
	(ii)	High pressure increases rate as collision frequency increases ora	[1]	
		High pressure moves eqm right/favours forward reaction as more moles on left ora	[1]	
		Uneconomic to use high pressures/high yield at low pressure	[1]	[3]
	(c) (i)	Reaction (too) exothermic/acid spray produced	[1]	[1]
	(ii)	$SO_3 + H_2SO_4 \rightarrow H_2S_2O_7$ $H_2S_2O_7 + H_2O \rightarrow 2H_2SO_4$	[1] [1]	[2]
	(d)	Preservative owtte antimicrobial/antioxidant/reducing agent	[1] [1]	[2]
	(e) (i)	$12.35 \times 0.01 / 1000 = 1.235 \times 10^{-4}$	[1]	[1]
	(ii)	$1.235 \times 10^{-4} \times 1000/50 = 2.47 \times 10^{-3}$	[1]	[1]
	(iii)	$2.47 \times 10^{-3} \times 64.1 = 0.158327 \text{g} = 158 \ (3 \text{sf only})$	[1]	[1]
				[18]
3	(a) (i)	Bond breaking = C <i>l</i> -C <i>l</i> = 242 C-H = 410 = 652 kJ	[1]	
		Bond forming = $C-Cl = 340$ H-Cl = 431 = 771 kJ	[1]	
		Enthalpy change = 652 – 771 = –119	[1]	[3]
	(ii)	UV/High T/sunlight	[1]	[1]

Page 4	Mark Scheme Syllabi		
	Cambridge International AS/A Level – May/June 2015 9701	22	
Question	Mark Scheme	Mark	Total
(iii)	Initiation $Cl_2 \rightarrow 2Cl_{\bullet}$	[1]	
	Propagation $C_2H_6 + Cl \rightarrow C_2H_5 + HCl$ $\cdot C_2H_5 + Cl_2 \rightarrow C_2H_5Cl + Cl$	[1] [1]	
	Termination $\bullet C_2H_5 + \bullet C_2H_5 \rightarrow C_4H_{10}$	[1]	
	All three names correctly assigned	[1]	[5]
(b) (i)	ethene	[1]	[1]
(ii)	KOH/NaOH	[1]	
	ethanolic AND heat/reflux	[1]	[2]
(iii)	H ₂ AND Pt or Ni (catalyst)	[1]	[1]
			[13]
4 (a) (i)	$\mathbf{A} = \mathbf{CH}_{3}\mathbf{CH}_{2}\mathbf{CH}_{2}\mathbf{CH}_{2}\mathbf{CHO}$	[1]	
	$\mathbf{B} = CH_3CH_2CH(CH_3)CHO$	[1]	
	$C = (CH_3)_2 CHCH_2 CHO$	[1]	
	$D = (CH_3)_3CCHO$	[1]	[4]
(ii)	$\begin{array}{cccc} CH_3 & CH_3 \\ C & C \\ H_3CCH_2 & H & H \\ CHO & OHC & CH_2CH_3 \end{array}$	[1+1]	[2]
(b) (i)	Fehling's/Benedict's OR Tollens' OR dichromate OR manganate Warm/heat Fehling's/Benedict's =(Brick)-red ppt Tollens' = silver/mirror OR grey/black precipitate	[1] [1]	
	Dichromate = orange to green Manganate = purple to colourless	[1]	[3]
(ii)	(2,4-)DNP(H)/Brady's reagent	[1]	
	Orange/yellow/red-orange/yellow-orange ppt	[1]	[2]
			[11]