

Cambridge International Examinations

Cambridge International Advanced Subsidiary and Advanced Level

CHEMISTRY 9701/21

Paper 2 AS Level Structured Questions

May/June 2016

MARK SCHEME
Maximum Mark: 60

Published

This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began, which would have considered the acceptability of alternative answers.

Mark schemes should be read in conjunction with the question paper and the Principal Examiner Report for Teachers.

Cambridge will not enter into discussions about these mark schemes.

Cambridge is publishing the mark schemes for the May/June 2016 series for most Cambridge IGCSE[®], Cambridge International A and AS Level components and some Cambridge O Level components.

® IGCSE is the registered trademark of Cambridge International Examinations.

Page 2	Mark Scheme	Syllabus	Paper
	Cambridge International AS/A Level – May/June 2016	9701	21

Question					Mark	Scheme			Mark	Total
1 (a)	name of element	nucleon no.	atomic no.	no. of protons	no. of neutrons	no. of electrons	overall charge			
	lithium	6	3	3	3	2	+1		[1]	
	oxygen	17	8	8	9	10	-2		[1]	[4]
	iron	54	26	26	28	24	+2		[1]	
	chlorine	35	17	17	18	17	0		[1]	
(b)	line straight line (curving proton line c) up labelle	d 'protons	,	ection than e	electron cur	⁄e		[1] [1] [1]	[3]
(c) (i)	Group 16/6, AND Big (owtte) in		g differend	ce/big gap	/big jump/j	ump in incre	ease/jump ir	difference after 6th IE	[1]	[1]
(ii)	increases (a	cross perio	d) due to	increasing	attraction (of nucleus fo	or electrons)		[1]	
	due to increa						vel		[1]	[2]
(iii)	electron (pai (Y has a) pa) <u>p orbital</u> /a	a (3) <u>p</u> <u>orbita</u>	<u>l</u> is full ORA			[1] [1]	[2]
(iv)	(1s ²)2s ² 2p ⁶ 3	s^23p^5							[1]	[1]
(d) (i)	0.56(%)								[1]	[1]

Page 3	Mark Scheme	Syllabus	Paper
	Cambridge International AS/A Level – May/June 2016	9701	21

Question	Mark Scheme	Mark	Total
(ii)	$\frac{(A \times 0.56) + (86 \times 9.86) + (87 \times 7.00) + (88 \times 82.58)}{100} = 87.71$	[1]	[2]
	A = 84	[1]	
			[16]
2 (a)	D = Ga G = Se	[1]	[1]
(b) (i)	$\mathbf{D}_2\mathrm{O}_3$ + 6HC $l \to 2\mathbf{D}\mathrm{C}l_3$ + 3H ₂ O M1 = species; M2 = balancing	[1] [1]	[2]
(ii)	$\mathbf{D}_{2}O_{3}$ + 2NaOH + 7H ₂ O \rightarrow 2Na \mathbf{D} (OH) ₄ (H ₂ O) ₂ OR $\mathbf{D}_{2}O_{3}$ + 2NaOH + 3H ₂ O \rightarrow 2Na \mathbf{D} (OH) ₄ OR $\mathbf{D}_{2}O_{3}$ + 2NaOH \rightarrow 2Na $\mathbf{D}O_{2}$ + H ₂ O OR $\mathbf{D}_{2}O_{3}$ + 2OH ⁻ + 7H ₂ O \rightarrow 2[\mathbf{D} (OH) ₄ (H ₂ O) ₂] ⁻ OR $\mathbf{D}_{2}O_{3}$ + 2OH ⁻ + 3H ₂ O \rightarrow 2[\mathbf{D} (OH) ₄] ⁻ OR $\mathbf{D}_{2}O_{3}$ + 2OH ⁻ \rightarrow 2 $\mathbf{D}O_{2}$ + H2O		[2]
	M1 = species; M2 = balancing	[1] [1]	
(c)	giant ionic/ionic lattice	[1]	[1]
(d)	$GO_2 + H_2O \rightarrow H_2GO_3$	[1]	[1]
			[7]

Page 4	Mark Scheme	Syllabus	Paper
	Cambridge International AS/A Level – May/June 2016	9701	21

Question	Mark Scheme	Mark	Total
3 (a) (i)	bubbles/effervescence/fizzing	[1]	
	calcium gets smaller/disappears	[1]	max
	water turns cloudy/milky	[1]	[3]
	calcium sinks	[1]	
(ii)	$Ca + 2H_2O \rightarrow Ca(OH)_2 + H_2$	[1]	[1]
(iii)	faster bubbling/disappearance of Ba OR no/less precipitate forms (owtte)	[1]	[1]
(b) (i)	energy reactants products reaction pathway M1 – general layout with products below reactants AND both labelled	[1]	[2]
	$M2 - E_a$ and ΔH /energy change/released labelled with vertical lines	[1]	
(ii)	activation energy is high	[1]	
	so few/no particles with $E\geqslant E_a$	[1]	[2]

Page 5	Mark Scheme	Syllabus	Paper
	Cambridge International AS/A Level – May/June 2016	9701	21

Question	Mark Scheme	Mark	Total
(iii)	high melting/boiling point	[1]	[0]
	strong forces (of attraction/between oppositely charged ions)/ strong (ionic) bonding	[1]	[2]
(iv)	MgO is basic / reacts with acid	[1]	[1]
(c) (i)	increases (down the group)	[1]	[1]
(ii)	$MgCO_3 \rightarrow MgO + CO_2$	[1]	[1]
(iii)	$2Ca(NO_3)_2 \rightarrow 2CaO + 4NO_2 + O_2$	[1]	[1]
			[15]
4 (a)	CH ₂ =CHCH ₂ CH ₃ /CH ₂ CHCH ₂ CH ₃ AND CH ₃ CH=CHCH ₃ /CH ₃ CHCHCH ₃	[1]	[1]
(b)	CH ₂ =CHCH ₂ CH ₃ /CH ₂ CHCH ₂ CH ₃ AND (CH ₃) ₂ C=CH ₂ /(CH ₃) ₂ CCH ₂	[1]	[1]
(c)	H_3C-C H_3C	[1]	[2]

Page 6	Mark Scheme	Syllabus	Paper
	Cambridge International AS/A Level – May/June 2016	9701	21

Question	Mark Scheme	Mark	Total
(d)	B is CH ₂ =CHCH ₂ CH ₃ OR CH ₃ CH=CHCH ₃ OR (CH ₃) ₂ C=CH ₂	[1]	
	distinguished by addition of bromine	[1]	[3]
	brown/red/orange/yellow to colourless/decolourises with B (but not A)	[1]	
			[7]
5 (a)	$H_3C \xrightarrow{H_3C \xrightarrow{B_r}} H_3C \xrightarrow{B_r}$		[2]
	M1 = lone pair on C of CN- AND curly arrow from lone pair to C of C—Br	[1]	
	M2 = correct dipole on C—Br, curly arrow from C—Br bond to Br AND Br	[1]	
(b) (i)	reduction	[1]	[1]
(ii)	disappearance of peak/dip/trough/absorption at 1680–1730	[1]	
	due to (loss of) C=O	[1]	
	OR		[2]
	peak at 3200–3650	[1]	
	due to (alcohol) O—H (formation)	[1]	
(c) (i)	sodium/potassium hydroxide aqueous	[1] [1]	[2]

Page 7	Mark Scheme	Syllabus	Paper
	Cambridge International AS/A Level – May/June 2016	9701	21

Question	Mark Scheme	Mark	Total
(ii)	ethanol	[1]	[1]
(d) (i)	(conc) H ⁺ /(conc) acid/(conc)H ₂ SO ₄ /(conc)H ₃ PO ₄	[1]	[1]
(ii)		[1]	[1]
(iii)	ethyl propanoate	[1]	[1]
(e) (i)	V = CH ₃ CH ₂ CHCHCH ₂ CH ₃ / CH ₃ CH ₂ CH=CHCH ₂ CH ₃ T = CH ₃ CH ₂ CH(OH)CH(OH)CH ₂ CH ₃	[1] [1]	[2]
(ii)	V = geometric(al)/cis-trans/E–Z T = optical	[1] [1]	[2]
			[15]