

Cambridge International Examinations

Cambridge International Advanced Subsidiary and Advanced Level

CANDIDATE NAME								
CENTRE NUMBER					CANDIDATE NUMBER			
CHEMISTRY							9701/	31
Paper 3 Advan	ced Prac	ctical Skills 1				May	June 20	17
							2 hou	ırs
Candidates ans	wer on t	he Question I	Paper.					
Additional Mate	rials:	As listed in	the Confidentia	al Instructions				

READ THESE INSTRUCTIONS FIRST

Write your Centre number, candidate number and name on all the work you hand in.

Give details of the practical session and laboratory where appropriate, in the boxes provided.

Write in dark blue or black pen.

You may use an HB pencil for any diagrams or graphs.

Do not use staples, paper clips, glue or correction fluid.

DO **NOT** WRITE IN ANY BARCODES.

Answer all questions.

Electronic calculators may be used.

You may lose marks if you do not show your working or if you do not use appropriate units.

Use of a Data Booklet is unnecessary.

Qualitative Analysis Notes are printed on pages 10 and 11.

A copy of the Periodic Table is printed on page 12.

At the end of the examination, fasten all your work securely together. The number of marks is given in brackets [] at the end of each question or part question.

Session	
Laboratory	

For Examiner's Use		
1		
2		
3		
Total		

This document consists of 12 printed pages.

1 In this experiment you will determine the relative formula mass of a copper salt by titration.

A solution of the copper salt reacts with excess acidified potassium iodide, producing iodine. This iodine is then titrated with aqueous sodium thiosulfate, using starch indicator.

FA 1 is an aqueous solution of the copper salt prepared by dissolving 26.0 g of the salt to make 1.00 dm³ of solution.

FA 2 is dilute sulfuric acid, H₂SO₄.

FA 3 is aqueous potassium iodide, KI.

FA 4 is $0.110 \, \text{mol dm}^{-3}$ sodium thiosulfate, $\text{Na}_2\text{S}_2\text{O}_3$. starch indicator

(a) Method

- Fill the burette with **FA 4**.
- Pipette 25.0 cm³ of FA 1 into a conical flask.
- Use the measuring cylinder to add approximately 10 cm³ of **FA 2** to the same conical flask.
- Use the measuring cylinder to add approximately 20 cm³ of **FA 3** to the mixture in the conical flask. The mixture will now be a brown colour, due to iodine produced in the reaction.
- Begin your rough titration by adding FA 4 from the burette until the mixture becomes light brown.
- Add 10 drops of starch indicator. The mixture will become darker.
- Continue titrating until the mixture becomes an off-white colour. This is the end-point.
- Add **one** drop of starch indicator to check that no traces of dark colour are produced. If the mixture stays off-white, the titration is finished. If some dark colour is produced, because iodine is still present, continue the titration.
- Record your burette readings and the rough titre in the space below.

- Carry out as many accurate titrations as you think necessary to obtain consistent results.
- Make sure any recorded results show the precision of your practical work.
- Record in a suitable form below all of your burette readings and the volume of FA 4 added in each accurate titration.

I	
II	
III	
IV	
V	
VI	
VII	

Keep FA 3 and starch indicator for use in Question 3.

[7]

(b) From your accurate titration results, obtain a suitable value for the volume of **FA 4** to be used in your calculations.

Show clearly how you obtained this value.

The iodine produced required cm³ of **FA 4**. [1]

1	(C)	Cal	lcu	lati	ons
l	C) Cai	ıcu	ıau	OHS

Show your working and appropriate significant figures in the final answer to **each** step of your calculations.

(i) Calculate the number of moles of sodium thiosulfate, $Na_2S_2O_3$, in the volume of **FA 4** calculated in **(b)**.

moles of $Na_2S_2O_3$ = mol

(ii) Balance the equation for the reaction of iodine with sodium thiosulfate. State symbols are not required.

$$....I_2$$
 + $.....Na_2S_2O_3$ \rightarrow $.....Na_2S_4O_6$ + $.....NaI$

(iii) Using your answer to (ii), calculate the number of moles of iodine that reacted with the number of moles of $Na_2S_2O_3$ calculated in (i).

moles of I_2 = mol

(iv) Iodine, I_2 , is produced in the reaction between FA 1 and FA 3. FA 3 is in excess.

$$2Cu^{2+}(aq) + 4I^{-}(aq) \rightarrow 2CuI(s) + I_2(aq)$$

Using your answer to (iii), calculate the number of moles of copper(II) ions in $25.0\,\text{cm}^3$ of FA 1.

moles of Cu²⁺ ions = mol

(v) Using your answer to (iv) and the information on page 2, calculate the relative formula mass of the copper compound in FA 1.

 $M_{\rm r}$ of copper compound =[4]

[Total: 12]

2 Malachite is a basic form of copper carbonate in which copper hydroxide is also present. The accepted chemical formula of malachite is CuCO₃.Cu(OH)₂.H₂O.

When malachite is heated, it decomposes as shown.

$$CuCO_3.Cu(OH)_2.H_2O(s) \rightarrow 2CuO(s) + CO_2(g) + 2H_2O(g)$$

In this experiment, you will heat malachite to decompose it and use your results to obtain evidence about the accepted formula of malachite.

FA 5 is malachite, CuCO₃.Cu(OH)₂.H₂O.

(a) Method

Read through the method before starting any practical work.

In the space below prepare a **single** table for your results of **Experiments 1** and **2**.

Experiment 1

- Weigh a crucible with its lid and record the mass.
- Add between 2.5 g and 3.0 g of FA 5 to the crucible. Weigh the crucible with FA 5 and lid and record the mass.
- Place the crucible on the pipe-clay triangle.
- Heat the crucible and contents gently for about two minutes, with the lid on.
- Remove the lid and continue heating gently for about three minutes.
- Replace the lid and leave the crucible and residue to cool for at least five minutes. Then reweigh the crucible and contents with the lid on. Record the mass.
- While the crucible is cooling, you may wish to begin work on Question 3.
- Calculate and record the mass of FA 5 used and the mass of residue obtained.

•	State the observation(s)	you made while the	e reaction was t	taking place.

Experiment 2

Repeat the method used in **Experiment 1**, using between 1.5 g and 2.0 g of **FA 5** in the second crucible.

Results

I II III IV V VI

[6]

(b) Calculation	lculations
-----------------	-------------------

Show your working and appropriate significant figures in the final answer to **each** step of your calculations.

 (i) Use your results from Experiment 1 to calculate the number of moles of copper oxide, CuO, obtained as residue.
 Use the Periodic Table on page 12 for any data you may require.

moles of CuO obtained in Experiment 1 = mol

(ii) Use your answer to (i), the equation on page 4 and the mass of **FA 5** you used in **Experiment 1**, to calculate the relative formula mass, M_r , of malachite.

 M_r of malachite (from **Experiment 1**) =

(iii) Use your results from **Experiment 2** to calculate another value for the relative formula mass, M_r , of malachite.

 M_r of malachite (from **Experiment 2**) =

(iv) Use data from the Periodic Table to calculate the relative formula mass, M_r , of malachite from its accepted formula, $CuCO_3$. $Cu(OH)_2$. H_2O .

 M_r of malachite (from formula) =

(v) If the relative formula mass of malachite obtained from **either** of your experiments is within 2.5% of the answer in (iv), this is good evidence that the accepted formula, CuCO₃.Cu(OH)₂.H₂O, is correct.

Show by calculation whether either of your experiments supports the accepted formula.

(c)	(i)	State one way of improving the accuracy of the experimental method, using the same masses of FA 5 .
		Explain the benefit of your improvement.
	(ii)	Explain why you would expect Experiment 1 to be more accurate than Experiment 2 .
		[3]

[Total: 14]

3 Qualitative Analysis

At each stage of any test you are to record details of the following.

- colour changes seen
- the formation of any precipitate
- the solubility of such precipitates in an excess of the reagent added

Where reagents are selected for use in a test, the **name** or **correct formula** of the element or compound must be given.

Where gases are released they should be identified by a test, **described in the appropriate place in your observations**.

You should indicate clearly at what stage in a test a change occurs. **No additional tests for ions present should be attempted.**

If any solution is warmed, a boiling tube MUST be used.

Rinse and reuse test-tubes and boiling tubes where possible.

(a) FA 6 is another salt of copper. The anion present is one of those listed in the Qualitative Analysis Notes.

(i) Transfer a **small** spatula measure of **FA 6** into a hard-glass test-tube.

()	Heat gently at first, then heat strongly, until no further change occurs.
	Record all your observations below.
(ii)	Suggest the chemical formula of FA 6 .
	[3]

(b) (i) Dissolve the remainder of **FA 6** in an approximately 10 cm depth of distilled water in a boiling tube.

FA 7 is a solution of a salt containing one anion from those listed in the Qualitative Analysis Notes.

Two cations are also present.

Carry out the tests described below using separate portions of solutions **FA 6** and **FA 7**. Record your observations in the table.

40.04	observations			
test	FA 6	FA 7		
To a 1 cm depth of solution in a test-tube, add an equal volume of FA 3 , aqueous potassium iodide, followed by a few drops of starch indicator.				
To a 1 cm depth of solution in a boiling tube, add aqueous sodium hydroxide, then				
heat gently and carefully.				
To a 1 cm depth of solution in a test-tube, add a few drops of aqueous silver nitrate.				
To a 1 cm depth of solution in a test-tube, add aqueous ammonia.				
To a 1 cm depth of solution in a test-tube, add a folded 3 cm length of magnesium ribbon.				

(ii)	What can you deduce about solution FA 7 from its reaction with magnesium? Explain your answer.

(iii)	Give the ionic equation for the reaction of the metal cation in FA 7 with aqueous sodium hydroxide. Include state symbols.
(iv)	What type of reaction took place when aqueous potassium iodide was added to FA 7 ? Use your observations to help you explain your answer.
(v)	The observation you made when aqueous silver nitrate was added to FA 7 does not allow the anion in FA 7 to be identified with certainty.
	Explain why you cannot be certain about the identity of the anion.
(vi)	A student suggested that the anion in FA 7 could be identified with more certainty if excess ammonia solution was added after the aqueous silver nitrate.
	Explain why this suggestion is not correct.
	[11]

[Total: 14]

Qualitative Analysis Notes

1 Reactions of aqueous cations

ion	react	ion with
ion	NaOH(aq)	NH ₃ (aq)
aluminium, Al³+(aq)	white ppt. soluble in excess	white ppt. insoluble in excess
ammonium, NH₄⁺(aq)	no ppt. ammonia produced on heating	_
barium, Ba ²⁺ (aq)	faint white ppt. is nearly always observed unless reagents are pure	no ppt.
calcium, Ca ²⁺ (aq)	white ppt. with high [Ca ²⁺ (aq)]	no ppt.
chromium(III), Cr³+(aq)	grey-green ppt. soluble in excess	grey-green ppt. insoluble in excess
copper(II), Cu ²⁺ (aq)	pale blue ppt. insoluble in excess	blue ppt. soluble in excess giving dark blue solution
iron(II), Fe ²⁺ (aq)	green ppt. turning brown on contact with air insoluble in excess	green ppt. turning brown on contact with air insoluble in excess
iron(III), Fe³+(aq)	red-brown ppt. insoluble in excess	red-brown ppt. insoluble in excess
magnesium, Mg²+(aq)	white ppt. insoluble in excess	white ppt. insoluble in excess
manganese(II), Mn²+(aq)	off-white ppt. rapidly turning brown on contact with air insoluble in excess	off-white ppt. rapidly turning brown on contact with air insoluble in excess
zinc, Zn ²⁺ (aq)	white ppt. soluble in excess	white ppt. soluble in excess

2 Reactions of anions

ion	reaction
carbonate, CO ₃ ²⁻	CO ₂ liberated by dilute acids
chloride, C <i>l</i> ⁻ (aq)	gives white ppt. with Ag ⁺ (aq) (soluble in NH ₃ (aq))
bromide, Br ⁻ (aq)	gives cream ppt. with Ag ⁺ (aq) (partially soluble in NH ₃ (aq))
iodide, I-(aq)	gives yellow ppt. with Ag ⁺ (aq) (insoluble in NH ₃ (aq))
nitrate, NO ₃ -(aq)	NH₃ liberated on heating with OH⁻(aq) and A <i>l</i> foil
nitrite, NO ₂ ⁻ (aq)	NH_3 liberated on heating with $OH^-(aq)$ and Al foil; NO liberated by dilute acids (colourless $NO \rightarrow$ (pale) brown NO_2 in air)
sulfate, SO ₄ ²⁻ (aq)	gives white ppt. with Ba ²⁺ (aq) (insoluble in excess dilute strong acids)
sulfite, SO ₃ ²⁻ (aq)	gives white ppt. with Ba ²⁺ (aq) (soluble in excess dilute strong acids)

3 Tests for gases

gas	test and test result
ammonia, NH ₃	turns damp red litmus paper blue
carbon dioxide, CO ₂	gives a white ppt. with limewater (ppt. dissolves with excess CO ₂)
chlorine, Cl ₂	bleaches damp litmus paper
hydrogen, H ₂	'pops' with a lighted splint
oxygen, O ₂	relights a glowing splint

The Periodic Table of Elements

										_														
	18	2	He	helium 4.0	10	Ne	neon 20.2	18	Ā	argon 39.9	36	궃	kryptor 83.8	22	×e	xenon 131.3	98	R	radon					
	17				6	ш	fluorine 19.0	17	Cl	chlorine 35.5	35	Ŗ	bromine 79.9	53	Н	iodine 126.9	82	¥	astatine -					
	16				80	0	oxygen 16.0	16	ഗ	sulfur 32.1	34	Se	selenium 79.0	52	<u>е</u>	tellurium 127.6	84	Ъо	polonium –	116	^	livermorium	ı	
	15				7	z	nitrogen 14.0	15	₾	phosphorus 31.0	33	As	arsenic 74.9	51	Sp	antimony 121.8	83	Ξ	bismuth 209.0					
	14				9	O	carbon 12.0	14	S	silicon 28.1	32	Ge	germanium 72.6	20	Sn	tin 118.7	82	Pb	lead 207.2	114	Εl	flerovium	ı	
	13				2	Ф	boron 10.8	13	Αl	aluminium 27.0	31	Ga	gallium 69.7	49	I	indium 114.8	81	<i>1</i> L	thallium 204.4					
										12	30	Zu	zinc 65.4	48	ၓ	cadmium 112.4	80	Ρ̈́	mercury 200.6	112	ပ်	copernicium		
										7	29	Cn	copper 63.5	47	Ag	silver 107.9	62	Au	gold 197.0	111	Rg	roentgenium	ı	
dno										10	28	Ë	nickel 58.7	46	Pd	palladium 106.4	78	చ	platinum 195.1	110	Ds	darmstadtium		
Group										6	27	ပိ	cobalt 58.9	45	몬	rhodium 102.9	77	'n	iridium 192.2	109	¥	meitnerium		
		-	I	hydrogen 1.0						80	26	Pe	iron 55.8	44	Ru	ruthenium 101.1	92	SO	osmium 190.2	108	Ϋ́	hassium	ı	
				,					7	25	Mn	manganese 54.9	43	ပ	technetium -	75	Re	rhenium 186.2	107	В	bohrium			
							loc	iss			9	24	ပ်	chromium 52.0	42	Mo	molybdenum 95.9	74	>	tungsten 183.8	106	Sg	seaborgium	ı
						Key	atomic number	atomic symbo	name relative atomic mass			2	23	>	vanadium 50.9	41	g	niobium 92.9	73	<u>⊾</u>	tantalum 180.9	105	90	dubnium
						ato	rela			4	22	F	titanium 47.9	40	Zr	zirconium 91.2	72	Ξ	hafnium 178.5	104	Ŗ	rutherfordium		
										က	21	Sc	scandium 45.0	39	>	yttrium 88.9	57-71	lanthanoids		89–103	actinoids			
	2				4	Be	beryllium 9.0	12	Mg	magnesium 24.3	20	Ca	calcium 40.1	38	ပ်	strontium 87.6	26	Ba	barium 137.3	88	Ra	radium		
	_				3	=	lithium 6.9	7	Na	sodium 23.0	19	×	potassium 39.1	37	Rb	rubidium 85.5	55	S	caesium 132.9	87	ŗ	francium		

1.1	Ρſ	lutetium 175.0	103	Ļ	lawrencium	ı	
70	Υp	ytterbium 173.1	102	Š	nobelium	ı	
69	Tm	thulium 168.9	101	Md	mendelevium	ı	
89	щ	erbium 167.3	100	Fm	ferminm	ı	
29	우	holmium 164.9	66	Es	einsteinium	ı	
99	٥	dysprosium 162.5	86	Ç	californium	ı	
65	Д	terbium 158.9	26	Ř	berkelium	ı	
49	P G	gadolinium 157.3	96	CH	curium	ı	
63	En	europium 152.0	92	Am	americium	ı	
62	Sm	samarium 150.4	94	Pu	plutonium	ı	
61	Pm	promethium	93	ď	neptunium	ı	
09	PZ	neodymium 144.4	92	\supset	uranium	238.0	
69	Ā	praseodymium 140.9	91	Ра	protactinium	231.0	
28	Ce	cerium 140.1	06	드	thorium	232.0	
22	Га	lanthanum 138.9	88	Ac	actinium	ı	

lanthanoids

actinoids

To avoid the issue of disclosure of answer-related information to candidates, all copyright acknowledgements are reproduced online in the Cambridge International Examinations Copyright Acknowledgements Booklet. This is produced for each series of examinations and is freely available to download at www.cie.org.uk after the live examination series.