

Cambridge International Examinations

AS & A Level	Cambridge internationa	ii Advanced Subsidiary and Advanced L	evei	
CANDIDATE NAME				
CENTRE NUMBER		CANDIDATE NUMBER		
CHEMISTRY			9701/35	
Paper 3 Advar	nced Practical Skills 1	Oct	ctober/November 2015	
			2 hours	
Candidates and	swer on the Question Paper			
Additional Mate	erials: As listed in the C	onfidential Instructions		
READ THESE	INSTRUCTIONS FIRST			
Give details of Write in dark b You may use a Do not use sta			ovided.	
Answer all que	estions. culators may be used.			

You may lose marks if you do not show your working or if you do not use appropriate units.

Use of a Data Booklet is unnecessary.

A copy of the Periodic Table is printed on page 12.

Qualitative Analysis Notes are printed on pages 10 and 11.

At the end of the examination, fasten all your work securely together. The number of marks is given in brackets [] at the end of each question or part question.

Session
Laboratory

For Examiner's Use	
1	
2	
3	
Total	

This document consists of 12 printed pages and 1 insert.

1 In this experiment you will determine the ionic equation for the reaction of acidified potassium manganate(VII) with potassium iodide. Excess potassium iodide is used and the reaction produces iodine. The amount of iodine produced is measured by titration with sodium thiosulfate.

FA 1 is 0.0180 mol dm⁻³ potassium manganate(VII), KMnO₄.

FA 2 is 1.00 mol dm⁻³ sulfuric acid, H₂SO₄.

FA 3 is 0.500 mol dm⁻³ potassium iodide, KI.

FA 4 is $0.100 \, \text{mol dm}^{-3}$ sodium thiosulfate, $\text{Na}_2 \text{S}_2 \text{O}_3$.

starch indicator

(a) Method

- Pipette 25.0 cm³ of **FA 1** into a conical flask.
- Use the measuring cylinder to add 25 cm³ of **FA 2** to the conical flask.
- Use the measuring cylinder to add 20 cm³ of **FA 3** to the conical flask.
- Fill the burette with **FA 4**.
- Carry out a rough titration. When the colour of the mixture becomes yellow/orange, add a few drops of starch indicator. Then titrate until the mixture goes colourless.
- Record all your burette readings in the space below.

The rough	titre is		cm ³
-----------	----------	--	-----------------

- Carry out as many accurate titrations as you think necessary to obtain consistent results.
- Make sure any recorded results show the precision of your practical work.
- Record in a suitable form below all of your burette readings and the volume of **FA 4** added in each accurate titration.

Keep FA 1 and FA 2 for use in Question 3 and FA 4 for use in Question 2.

I	
II	
III	
IV	
V	
VI	
VII	

[7]

(b) From your accurate titration results, obtain a suitable value for the volume of **FA 4** to be used in your calculations.

Show clearly how you have obtained this value.

Volume of **FA 4** required is cm³. [1]

(c) Calculations

Show your working and appropriate significant figures in the final answer to **each** step of your calculations.

(i) Calculate the number of moles of sodium thiosulfate in the volume of **FA 4** calculated in **(b)**.

moles of
$$Na_2S_2O_3 = \dots mol$$

(ii) Use the equation below to calculate the number of moles of iodine that reacted with the sodium thiosulfate in the titration.

$$I_2 + 2Na_2S_2O_3 \rightarrow Na_2S_4O_6 + 2NaI$$

moles of
$$I_2$$
 = mol

(iii) Use information on page 2 to calculate the number of moles of potassium manganate(VII) in **FA 1** used in the titration.

moles of
$$KMnO_4 = \dots mol$$

(iv) From your answers to (ii) and (iii), calculate the number of moles of iodine produced by the reaction of **2.00** moles of potassium manganate(VII) with excess potassium iodide.

moles
$$I_2$$
 = mol

(v) Using your answer to (iv), put a tick next to the ionic equation that represents the reaction between FA 1 and FA 3.

$$2MnO_4^- + 8I^- + 16H^+ \rightarrow 4I_2 + 2Mn^{3+} + 8H_2O$$

$$2MnO_4^- + 10I^- + 16H^+ \rightarrow 5I_2 + 2Mn^{2+} + 8H_2O$$

$$2MnO_4^- + 12I^- + 16H^+ \rightarrow 6I_2 + 2Mn^+ + 8H_2O$$

(vi)	Prove that the iodide ion has been oxidised in the equation that you selected in (v).
	[5]
(d) (i)	The error in calibration of the pipette you used is $\pm 0.06\text{cm}^3$. Calculate the percentage error when measuring FA 1 , using the pipette.
	percentage error = %
(ii)	A student suggested that the experiment would be more accurate if a pipette was used to measure solution FA 3 .
	State and explain whether you agree with the student.
	[2]
	[Total: 15]

2 In this experiment you will investigate how the rate of reaction between sodium thiosulfate and hydrochloric acid is affected by the concentration of the acid.

When aqueous thiosulfate ions react with hydrogen ions, H⁺, in any acid, a pale yellow precipitate of sulfur is formed. The ionic equation for this reaction is given below.

$$S_2O_3^{2-}(aq) + 2H^+(aq) \rightarrow S(s) + SO_2(aq) + H_2O(l)$$

The rate of the reaction can be determined by measuring the time taken to produce a fixed quantity of sulfur.

FA 4 is 0.10 mol dm⁻³ sodium thiosulfate, Na₂S₂O₃.

FA 5 is 0.20 mol dm⁻³ hydrochloric acid, HC*l*.

(a) Method

Record **all** your measurements, in an appropriate form, in the space below.

Experiment 1

- Use the larger measuring cylinder to transfer 40 cm³ of **FA 4** into the 100 cm³ beaker.
- Rinse the larger measuring cylinder thoroughly with water, then add 30 cm³ of **FA 5** to the beaker and start timing **immediately**.
- Stir the mixture once and place the beaker on top of the printed insert page provided.
- Look down through the solution in the beaker at the print on the insert.
- Stop timing as soon as the precipitate of sulfur makes the print on the insert invisible.
- Record the reaction time to the **nearest second**.
- Empty and rinse the 100 cm³ beaker.
- Dry the outside of the beaker ready for Experiment 2.

Experiment 2

- Rinse the larger measuring cylinder, then use it to transfer 40 cm³ of **FA 4** into the 100 cm³ beaker.
- Use the smaller measuring cylinder to add 10 cm³ of distilled water to the beaker.
- Use the same measuring cylinder to add 20 cm³ of **FA 5** to the mixture in the beaker and start timing **immediately**.
- Stir the mixture once and place the beaker on top of the printed insert page provided.
- Stop timing as soon as the print on the insert becomes invisible.
- Record the reaction time to the **nearest second**.
- Empty and rinse the 100 cm³ beaker.
- Dry the outside of the beaker ready for Experiment 3.

Experiment 3

- Carry out the reaction using a mixture of 40 cm³ of **FA 4**, 20 cm³ of distilled water and 10 cm³ of **FA 5**.
- Measure and record the reaction time to the nearest second.

I II III IV

[4]

(b) (i) The 'rate of reaction' can be represented by the formula below.

	'rate of reaction' = $\frac{1000}{\text{reaction time}}$
	Use this formula to calculate the 'rate of reaction' for Experiments 1 and 3. Give the unit.
	'rate of reaction' for Experiment 1 unit unit
	'rate of reaction' for Experiment 3 unit unit
(ii)	Calculate the initial concentrations of hydrochloric acid in the reaction mixtures in Experiments 1 and 3.
	initial concentration of HCl in Experiment 1 = mol dm ⁻³
	initial concentration of HCl in Experiment 3 = moldm ⁻³
(iii)	How is the 'rate of reaction' affected by the concentration of hydrochloric acid in the mixture?
(iv)	Predict how the reaction time measured in Experiment 1 would have been affected if the experiment had been carried out using 0.20 mol dm ⁻³ sulfuric acid instead of 0.20 mol dm ⁻³ hydrochloric acid. Explain your answer.
(v)	Predict how the reaction time measured in Experiment 3 would have been affected if the experiment had been carried out in a 250 cm³ beaker instead of a 100 cm³ beaker. Explain your answer.
	[5]

3 Qualitative Analysis

At each stage of any test you are to record details of the following.

- colour changes seen
- the formation of any precipitate
- the solubility of such precipitates in an excess of the reagent added

Where gases are released they should be identified by a test, **described in the appropriate place in your observations**.

You should indicate clearly at what stage in a test a change occurs. No additional tests for ions present should be attempted.

If any solution is warmed, a boiling tube MUST be used.

Rinse and reuse test-tubes and boiling tubes where possible.

Where reagents are selected for use in a test, the name or correct formula of the element or compound must be given.

(a) FA 6 is a sodium compound containing one anion listed on page 11.

Dissolve the **FA 6** provided in about 15 cm³ of distilled water in a boiling tube. Carry out the following tests and record your observations in the table below.

	test	observations
(i)	To a 1cm depth of the solution of FA 6 in a test-tube, add a few drops of aqueous barium chloride or aqueous barium nitrate, then	
	add dilute hydrochloric acid.	
(ii)	To a 1cm depth of the solution of FA 6 in a test-tube, add an equal volume of aqueous hydrogen peroxide, then	
	add a few drops of aqueous barium chloride or aqueous barium nitrate, then	
	add dilute hydrochloric acid.	

	test	observations
(iii)	To a 1 cm depth of the solution of FA 6 in a boiling tube, add an equal volume of FA 2 , sulfuric acid, then	
	heat the mixture gently and cautiously.	
(iv)	To a 1 cm depth of the solution of FA 6 in a test-tube, add an equal volume of aqueous sodium hydroxide, then	
	add a few drops of FA 1 , aqueous potassium manganate(VII), then	
	add FA 2 , sulfuric acid.	

(v)	Identify the anion in FA 6 , and state one piece of evidence for your identification.
	anion
	evidence
(vi)	Give the chemical equation for the reaction between FA 6 and hydrogen peroxide, H_2O_2 in test (ii). State symbols are not required.
	[7

(b) FA 7, FA 8, FA 9 and FA 10 each contain one cation from the list on page 10.

You will attempt to identify the cations by testing with aqueous sodium hydroxide and aqueous ammonia.

In each case, use a 1 cm depth of the solution in a test-tube.

(i) Complete the table below.

toot	observations			
test	FA 7	FA 8	FA 9	FA 10
add sodium hydroxide				
add aqueous ammonia				

(ii)	Use your observations to identify, as far as possible, the cation present in each solution. If alternative identities are possible, state this clearly.
	FA 7 cation
	FA 8 cation
	FA 9 cation
	FA 10 cation
(iii)	Give the ionic equation for the reaction of one of your cations with a few drops of sodium hydroxide. State symbols are not required.
(iv)	The precipitates obtained when alkalis are added to solutions of certain cations are sometimes difficult to see. Suggest how, using no additional apparatus, the experiment could be repeated in a way that would make these precipitates more visible.
	[9]

[Total: 16]

Qualitative Analysis Notes

Key: [ppt. = precipitate]

1 Reactions of aqueous cations

ion	react	tion with
ion	NaOH(aq)	NH ₃ (aq)
aluminium, Al³+(aq)	white ppt. soluble in excess	white ppt. insoluble in excess
ammonium, NH ₄ ⁺ (aq)	no ppt. ammonia produced on heating	_
barium, Ba ²⁺ (aq)	no ppt. (if reagents are pure)	no ppt.
calcium, Ca ²⁺ (aq)	white ppt. with high [Ca ²⁺ (aq)]	no ppt.
chromium(III), Cr³+(aq)	grey-green ppt. soluble in excess giving dark green solution	grey-green ppt. insoluble in excess
copper(II), Cu ²⁺ (aq)	pale blue ppt. insoluble in excess	blue ppt. soluble in excess giving dark blue solution
iron(II), Fe ²⁺ (aq)	green ppt. turning brown on contact with air insoluble in excess	green ppt. turning brown on contact with air insoluble in excess
iron(III), Fe³+(aq)	red-brown ppt. insoluble in excess	red-brown ppt. insoluble in excess
magnesium, Mg ²⁺ (aq)	white ppt. insoluble in excess	white ppt. insoluble in excess
manganese(II), Mn²+(aq)	off-white ppt. rapidly turning brown on contact with air insoluble in excess	off-white ppt. rapidly turning brown on contact with air insoluble in excess
zinc, Zn²+(aq)	white ppt. soluble in excess	white ppt. soluble in excess

2 Reactions of anions

ion	reaction
carbonate, CO ₃ ²⁻	CO ₂ liberated by dilute acids
chloride, C <i>l</i> ⁻ (aq)	gives white ppt. with Ag ⁺ (aq) (soluble in NH ₃ (aq))
bromide, Br ⁻ (aq)	gives cream ppt. with Ag ⁺ (aq) (partially soluble in NH ₃ (aq))
iodide, I ⁻ (aq)	gives yellow ppt. with Ag ⁺ (aq) (insoluble in NH ₃ (aq))
nitrate, NO ₃ ⁻ (aq)	NH₃ liberated on heating with OH⁻(aq) and A <i>l</i> foil
nitrite, NO ₂ ⁻ (aq)	NH_3 liberated on heating with $OH^-(aq)$ and Al foil; NO liberated by dilute acids (colourless $NO \rightarrow$ (pale) brown NO_2 in air)
sulfate, SO ₄ ²⁻ (aq)	gives white ppt. with Ba ²⁺ (aq) (insoluble in excess dilute strong acids)
sulfite, SO ₃ ²⁻ (aq)	SO ₂ liberated with dilute acids; gives white ppt. with Ba ²⁺ (aq) (soluble in excess dilute strong acids)

3 Tests for gases

gas	test and test result
ammonia, NH ₃	turns damp red litmus paper blue
carbon dioxide, CO ₂	gives a white ppt. with limewater (ppt. dissolves with excess CO ₂)
chlorine, Cl ₂	bleaches damp litmus paper
hydrogen, H ₂	"pops" with a lighted splint
oxygen, O ₂	relights a glowing splint
sulfur dioxide, SO ₂	turns acidified aqueous potassium manganate(VII) from purple to colourless

The Periodic Table of the Elements

								Gro	Group								
_	=											=	IV	>	N	NII	0
							1.0 H Hydrogen										4.0 He Helium
6.9 Lithium	9.0 Be Beryllium					ı						10.8 B Boron	12.0 C Carbon	14.0 N itrogen	16.0 O Oxygen 8	19.0 F Fluorine	20.2 Ne Neon
23.0 Na Sodium	Mg Magnesium											27.0 A1 Juminium	28.1 Si licon	31.0 P Phosphorus	32.1 S Sulfur	35.5 C1 Chlorine	39.9 Ar Argon
39.1 K Potassium 19	40.1 Ca Calcium	Scandium	47.9 Ti Titanium	50.9 V	52.0 Cr Chromium 24	Mn Manganese 25	55.8 Fe Iron	58.9 Co Cobalt 27	58.7 Ni Nickel	63.5 Cu Copper	65.4 Zn Zinc 30						83.8 Krypton 36
85.5 Rb Rubidium	87.6 St Strontium	88.9 ≺	21.2 Zr	92.9 Nb Niobium	95.9 Molybdenum	Tc Technetium	Ru Ruthenium 44	Rhodium 45	106 Pd Palladium 46	108 Ag Siiver 47	112 Cd Cadmium 48	115 In Indium	Sn Tin	122 Sb Antimony 51	128 Te Tellurium 52		Xe Xenon Xenon
	137 Ba Barium 56	139 La Lanthanum 57 **	178 Hf Hafnium 72	181 Ta Tantalum	184 W Tungsten 74	186 Re Rhenium 75		192 Ir	195 Pt Platinum 78	197 Au Gold	201 Hg Mercury 80		207 Pb Lead 82	209 Bi Bismuth	Po Polonium 84	At Astatine 85	Rn Radon 86
Francium 87	Radium 88	Actinium 1	Rutherfordium	Db Dubnium 105	Sg Seaborgium 106	Bh Bohrium 107	Hssium	Meitnerium	- §	Uuu Unununium 111	Uub Ununbium				Uuh Ununhexium 116		Ununoctium
8-71 L:	*58-71 Lanthanides 190-103 Actinides	se s	*	140 Ce Cerlum 58	Pr Praseodymium 59	144 Nd Neodymium 60	Pm Promethium 61	150 Sm Samarium 62	152 Eu Europium 63	157 Gd Gadolinium 64	159 Tb Terbium	163 Dy Dysprosium 66	165 Ho Holmium	167 Er Erbium 68	169 Tm Thulium	73 Yb Ytterbium 70	175 Lu Lutetium 71
Key	« ×	a = relative atomic mass † X = atomic symbol b = proton (atomic) number	mass †	Th Thorium 90	Pa Protactinium 91	U Uranium 92	Neptunium	Putonium		Curium 96	BK Berkelium 97	Californium 98	Es Einsteinium 99		Md Mendelevium 101		Lr Lawrendum 103

To avoid the issue of disclosure of answer-related information to candidates, all copyright acknowledgements are reproduced online in the Cambridge International Examinations Copyright Acknowledgements Booklet. This is produced for each series of examinations and is freely available to download at www.cie.org.uk after the live examination series.