

CHEMISTRY

Paper 1 Multiple Choice (Core)

0620/12 February/March 2019

45 minutes

Additional Materials: Multiple Choice Answer Sheet Soft clean eraser Soft pencil (type B or HB is recommended)

READ THESE INSTRUCTIONS FIRST

Write in soft pencil.

Do not use staples, paper clips, glue or correction fluid. Write your name, centre number and candidate number on the Answer Sheet in the spaces provided unless this has been done for you. DO **NOT** WRITE IN ANY BARCODES.

There are **forty** questions on this paper. Answer **all** questions. For each question there are four possible answers **A**, **B**, **C** and **D**.

Choose the **one** you consider correct and record your choice in **soft pencil** on the separate Answer Sheet.

Read the instructions on the Answer Sheet very carefully.

Each correct answer will score one mark. A mark will not be deducted for a wrong answer. Any rough working should be done in this booklet. A copy of the Periodic Table is printed on page 16. Electronic calculators may be used.

This syllabus is regulated for use in England, Wales and Northern Ireland as a Cambridge International Level1/Level 2 Certificate.

This document consists of 15 printed pages and 1 blank page.

- **1** Four processes are listed.
 - 1 Brownian motion
 - 2 condensation
 - 3 diffusion
 - 4 evaporation

Which processes involve a change of state?

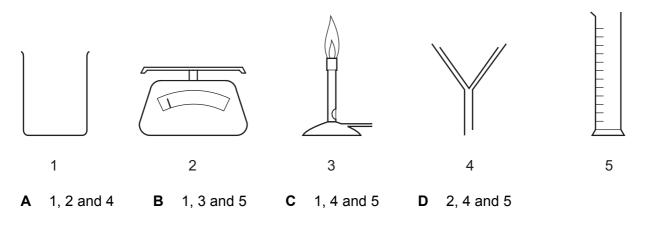
A 1 and 2 **B** 1 and 3 **C** 2 and 4 **D** 3 and 4

2 A student measures the time taken for 2.0g of magnesium to dissolve in 50 cm³ of dilute sulfuric acid.

Which apparatus is essential to complete the experiment?

- 1 stop-clock
- 2 measuring cylinder
- 3 thermometer
- 4 balance

A 1, 2 and 4 **B** 1 and 2 only **C** 1 and 4 only **D** 2, 3 and 4

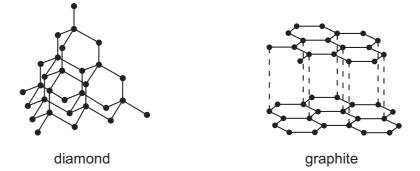

3 Which method should be used to separate a mixture of two liquids?

- A crystallisation
- **B** electrolysis
- **C** filtration
- **D** fractional distillation

4 Lead(II) iodide is insoluble in water.

Lead(II) iodide is made by adding aqueous lead(II) nitrate to aqueous potassium iodide.

Which pieces of apparatus are needed to obtain solid lead(II) iodide from 20 cm^3 of aqueous lead(II) nitrate?

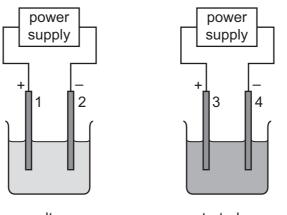

5 Which row describes isotopes of the same element?

	number of protons	number of neutrons
Α	different	different
В	different	same
С	same	different
D	same	same

6 Which row describes the structure of the positive ion in sodium chloride?

	protons	electrons	neutrons
Α	11	11	12
в	11	10	12
С	17	17	18
D	17	18	18

7 Which pair of statements about diamond and graphite is correct?


- A Diamond and graphite are both pure carbon. They are both macromolecules.
- **B** Diamond and graphite can both be used as electrodes. Graphite is also used as a lubricant.
- **C** Diamond has covalent bonds. Graphite has ionic bonds.
- **D** Diamond is hard with a high melting point. Graphite is soft with a low melting point.
- 8 What is the nucleon number of an atom?
 - A the number of neutrons
 - B the number of protons
 - **C** the total number of protons and neutrons
 - **D** the total number of protons and electrons
- **9** The relative formula mass, M_r , of calcium carbonate, CaCO₃, is 100.

What is the mass of carbon present in 100 g of calcium carbonate?

A 12g **B** 36g **C** 40g **D** 60g

10 Two electrolysis experiments were carried out as shown.

The graphite electrodes are labelled 1-4.

molten sodium chloride

concentrated aqueous sodium chloride

Which row describes the products at the electrodes in these experiments?

	electrode 1	electrode 2	electrode 3	electrode 4
Α	chlorine	hydrogen	chlorine	hydrogen
в	chlorine	sodium	chlorine	hydrogen
С	chlorine	sodium	hydrogen	chlorine
D	sodium	chlorine	sodium	chlorine

11 10 g of ammonium nitrate is added to water at 25 °C and the mixture stirred.

The ammonium nitrate dissolves and, after one minute, the temperature of the solution is 10 °C.

Which word describes this change?

- A endothermic
- **B** exothermic
- **C** neutralisation
- **D** reduction
- 12 Which process involves a chemical change?
 - A dissolving copper(II) sulfate
 - **B** distilling ethanol
 - **C** freezing water
 - D neutralising copper(II) oxide

13 Lumps of limestone react with dilute hydrochloric acid according to the equation shown.

 $CaCO_3 + 2HCl \rightarrow CaCl_2 + H_2O + CO_2$

Which change in conditions decreases the rate of the reaction?

- A increase the concentration of the acid
- B increase the volume of the acid
- C increase the size of the lumps of limestone
- D increase the temperature
- 14 Which reaction is reversible?
 - $\textbf{A} \quad Cu \ + \ ZnSO_4 \ \rightarrow \ CuSO_4 \ + \ Zn$
 - $\textbf{B} \quad \text{CuO} \ + \ \text{H}_2\text{SO}_4 \ \rightarrow \ \text{CuSO}_4 \ + \ \text{H}_2\text{O}$
 - **C** CuO + $H_2 \rightarrow Cu + H_2O$
 - $\textbf{D} \quad CuSO_4 \bullet 5H_2O \rightarrow CuSO_4 + 5H_2O$
- 15 The reaction between magnesium and carbon dioxide is shown in the equation.

 $2Mg + CO_2 \rightarrow 2MgO + C$

Which statement describes what happens in this reaction?

- **A** Carbon is oxidised.
- B Magnesium is reduced.
- **C** Neither oxidation nor reduction happens.
- **D** The carbon in carbon dioxide is reduced.
- **16** Barium hydroxide is an alkali. It reacts with hydrochloric acid.

How does the pH of the hydrochloric acid change as an excess of aqueous barium hydroxide is added?

- **A** The pH decreases from pH 14 and becomes constant at pH 7.
- **B** The pH decreases from pH 14 to about pH 1.
- **C** The pH increases from pH1 and becomes constant at pH7.
- **D** The pH increases from pH 1 to about pH 14.

17 Copper(II) sulfate crystals are blue. They are made by adding an excess of copper(II) oxide to sulfuric acid.

The mixture is heated and stirred.

It is then filtered and the filtrate is allowed to evaporate, leaving blue crystals.

Why is filtration necessary?

- **A** to remove soluble properties
- B to remove sulfuric acid
- **C** to remove the blue crystals
- **D** to remove unreacted copper(II) oxide
- **18** The results of two tests on an aqueous solution of X are shown.

test	observation
aqueous sodium hydroxide added	green precipitate formed
acidified aqueous silver nitrate added	yellow precipitate formed

What is X?

- A copper(II) chloride
- B copper(II) iodide
- **C** iron(II) chloride
- **D** iron(II) iodide
- **19** Information about the solubility in water of four oxides is shown.

Which oxide, when added to water, gives a solution with a pH less than pH7?

	name of oxide	solubility in water
Α	nitrogen dioxide	soluble
в	copper(II) oxide	insoluble
С	silicon(IV) oxide	insoluble
D	barium oxide	soluble

20 The elements sodium to argon form Period 3 of the Periodic Table.

Which row describes the trend across Period 3 from left to right?

	number of outer shell electrons	metallic character	group number
Α	decreases	decreases	decreases
В	decreases	increases	decreases
С	increases	decreases	increases
D	increases	increases	increases

21 Astatine is below iodine in Group VII in the Periodic Table.

Which row describes the properties of astatine?

	state at room temperature	reactivity
Α	gas	displaces chlorine, bromine and iodine
в	gas	displaces iodine but does not displace chlorine or bromine
С	solid	displaces iodine but does not displace chlorine or bromine
D	solid	does not displace chlorine, bromine or iodine

22 Which row describes a transition element?

	density in g/cm ³	colour of chloride
Α	0.98	green
В	0.98	white
С	8.90	green
D	8.90	white

- 23 Which statement explains why elements in Group VIII of the Periodic Table are unreactive?
 - **A** They are monatomic gases.
 - **B** They form stable diatomic molecules.
 - **C** They have a full outer shell of electrons.
 - **D** They share electrons with each other.

24 The electrical conductivity of magnesium was tested.

Magnesium was then added to dilute sulfuric acid and a gas, Q, was produced.

Which row is correct?

	electrical conductivity of magnesium	gas Q
Α	good	hydrogen
В	good	oxygen
С	poor	hydrogen
D	poor	oxygen

25 Four reactions that take place in the blast furnace to produce iron are shown.

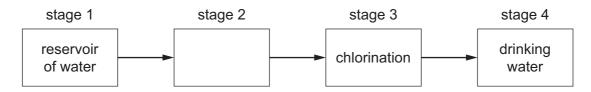
Which reaction is used to keep the furnace hot?

- $\textbf{A} \quad \textbf{C} \ \textbf{+} \ \textbf{O}_2 \ \rightarrow \ \textbf{CO}_2$
- **B** CO_2 + C \rightarrow 2CO
- $\textbf{C} \quad \text{Fe}_2\text{O}_3 \ \textbf{+} \ 3\text{C} \ \rightarrow \ 2\text{Fe} \ \textbf{+} \ 3\text{CO}$
- $\textbf{D} \quad Fe_2O_3 \ \textbf{+} \ 3CO \ \rightarrow \ 2Fe \ \textbf{+} \ 3CO_2$
- 26 The list gives the order of some metals and hydrogen in the reactivity series.

Metal X is also included.

most reactive	Κ
	Mg
	Zn
	Н
	Х
least reactive	Cu

Which row correctly shows the properties of metal X?


	reacts with dilute acids	oxide reduced by carbon
Α	no	no
в	no	yes
С	yes	no
D	yes	yes

27 The properties of four elements are shown.

Which element is used to make aircraft bodies?

	density	brittle or malleable
Α	high	brittle
В	high	malleable
С	low	brittle
D	low	malleable

28 The diagram shows how water is treated to make it suitable for drinking.

What happens in stage 2?

- A condensation
- **B** sublimation
- **C** evaporation
- **D** filtration
- **29** A farmer treats a field with calcium hydroxide to make it less acidic.

When the farmer adds ammonium nitrate fertiliser to the field immediately after the calcium hydroxide, they react.

Why does this reaction make the fertiliser less effective?

- A It makes ammonia gas, so less nitrogen is absorbed by the soil.
- **B** It makes an acid, making the soil acidic again.
- **C** It makes nitrogen gas, so less nitrogen is absorbed by the soil.
- D It makes the fertiliser too strong, stopping the plants growing so well.

30 Which row showing an air pollutant and its major source is not correct?

	pollutant	major source of pollutant							
Α	carbon monoxide	complete combustion of carbon fuels							
в	lead compounds	leaded petrol							
С	oxides of nitrogen	car engines							
D	sulfur dioxide	fossil fuels containing sulfur							

- 31 Which substances are needed for iron to rust?
 - A carbon dioxide and oxygen
 - **B** oxygen only
 - **C** water and carbon dioxide
 - **D** water and oxygen
- **32** Methane and carbon dioxide are both greenhouse gases.

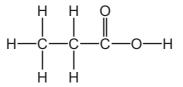
Which row identifies a source of methane and a source of carbon dioxide?

	source of methane	source of carbon dioxide
Α	decomposition of vegetation	hydrogen car exhausts
В	digestion in animals	diesel car exhausts
С	petrol car exhausts	decomposition of vegetation
D	respiration	petrol car exhausts

- 33 Which element has an oxide that is used as a food preservative?
 - A helium
 - **B** hydrogen
 - **C** iron
 - D sulfur

34 Lime is made by heating limestone.

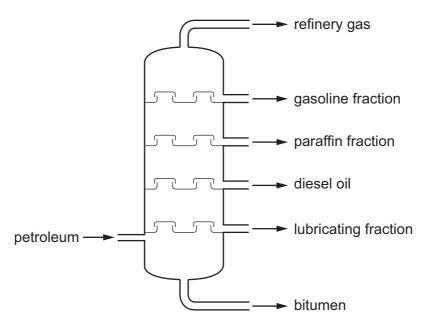
Which equation represents this reaction?


- $\textbf{A} \quad \text{CaCO}_3 \ \rightarrow \ \text{Ca} \ + \ \text{O}_2 \ + \ \text{CO}$
- $\textbf{B} \quad \text{CaCO}_3 \ \rightarrow \ \text{CaO} \ + \ \text{CO}_2$
- $\textbf{C} \quad \text{CaCO}_3 \ \textbf{+} \ \text{H}_2\text{O} \ \rightarrow \ \textbf{CaO} \ \textbf{+} \ \text{H}_2\text{CO}_3$
- $\textbf{D} \quad \text{CaCO}_3 \ \textbf{+} \ \text{H}_2\text{O} \ \rightarrow \ \text{Ca(OH)}_2 \ \textbf{+} \ \text{CO}_2$
- **35** Most objects made from synthetic polymers last for many years.

Why do these polymers last for so long?

	chemically unreactive	biodegradable
Α	no	no
В	no	yes
С	yes	no
D	yes	yes

36 The structure of a compound, G, is shown.


G is in the same homologous series as ethanoic acid.

Which row describes some of the properties of an aqueous solution of G?

	produces a gas with magnesium	turns methyl orange yellow
Α	no	yes
в	no	no
С	yes	no
D	yes	yes

37 The fractional distillation of petroleum is shown.

Which fraction is the least volatile?

- A bitumen
- B diesel oil
- **C** gasoline fraction
- **D** refinery gas
- 38 Which row shows the properties of methane?

	soluble in water	state at room temperature	gives a positive test with aqueous bromine
Α	no	gas	no
В	no	gas	yes
С	yes	liquid	no
D	yes	liquid	yes

- 1 C₄H₁₀
- 2 C_2H_5OH
- 3 C₄H₉OH
- 4 C₄H₉COOH
- 5 C₅H₁₁OH

Which compounds are in the same homologous series?

- **A** 1, 3 and 4 only
- **B** 2, 3 and 5 only
- C 3 and 4 only
- **D** 3 and 5 only
- 40 Which process is used to make an alkene from a long-chain alkane?
 - **A** combustion
 - **B** condensation
 - **C** cracking
 - **D** polymerisation

BLANK PAGE

15

Permission to reproduce items where third-party owned material protected by copyright is included has been sought and cleared where possible. Every reasonable effort has been made by the publisher (UCLES) to trace copyright holders, but if any items requiring clearance have unwittingly been included, the publisher will be pleased to make amends at the earliest possible opportunity.

To avoid the issue of disclosure of answer-related information to candidates, all copyright acknowledgements are reproduced online in the Cambridge Assessment International Education Copyright Acknowledgements Booklet. This is produced for each series of examinations and is freely available to download at www.cambridgeinternational.org after the live examination series.

Cambridge Assessment International Education is part of the Cambridge Assessment Group. Cambridge Assessment is the brand name of the University of Cambridge Local Examinations Syndicate (UCLES), which itself is a department of the University of Cambridge.

The Periodic Table of Elements

	VIII	2	Не	helium 4	10	Ne	neon 20	18	Ar	argon 40	36	Кr	krypton 84	54	Xe	xenon 131	86	Rn	radon	1					
	١١٨				6	ш	fluorine 19	17	Cl	chlorine 35.5	35	Ъ	bromine 80	53	Ι	iodine 127	85	At	astatine	1					
	١٨				80	0	oxygen 16	16	S	sulfur 32	34	Se	selenium 79	52	Те	tellurium 128	84	Ро	polonium	116		livermorium –			
	^				7	z	nitrogen 14	15	٩	phosphorus 31	33	As	arsenic 75	51	Sb	antimony 122	83	Bi	bismuth	607					
	\geq				9	ပ	carbon 12	14	Si	silicon 28	32	Ge	germanium 73	50	Sn	tin 119	82	Pb	lead	114	FΙ	flerovium -			
	III				5	В	boron 11	13	Al	aluminium 27	31	Ga	gallium 70	49	In	indium 115	81	11	thallium	204					
											30	Zn	zinc 65	48	Cd	cadmium 112	80	Hg	mercury	112	C U	copernicium -			
											29	Cu	copper 64	47	Ag	silver 108	79	Au	gold	19/	Rg	roentgenium -			
Group											28	ïŻ	nickel 59	46	Pd	palladium 106	78	ħ	platinum	061 011	Ds	darmstadtium -			
Gro											27	ပိ	cobalt 59	45	Rh	rhodium 103	77	Ir	iridium	109	Mt	meitnerium -			
		-	Г	hydrogen 1							26	Fе	iron 56	44	Ru	ruthenium 101	76	SO	osmium	190	Hs	hassium -			
											25	Mn	manganese 55	43	Гс	technetium -	75	Re	rhenium	180	Bh	bohrium —			
		Kev			atomic number			loc	lo	ass				24	ŗ	chromium 52	42	Мо	molybdenum 96	74	×	tungsten	106	Sg	seaborgium _
			Key	Key		atomic symbo	name relative atomic mass				23	>	vanadium 51	41	qN	niobium 93	73	Та	tantalum	181	Db	dubnium –			
						ato	rela				22	F	titanium 48	40	Zr	zirconium 91	72	μ	hafnium	104	Ŗ	rutherfordium -			
								-			21	Sc	scandium 45	39	≻	yttrium 89	57-71	lanthanoids		89-103	actinoids				
	=				4	Be	beryllium 9	12	Mg	magnesium 24	20	Ca	calcium 40	38	S	strontium 88	56	Ba	barium	13/ 88	Ra	radium _			
	_				ę	:	lithium 7	11	Na	sodium 23	19	×	potassium 39	37	Rb	rubidium 85	55	Cs	caesium	87	Ъ	francium -			

Lu Iutetium 175 103 Lr Iawrencium Yby Ytterbium 173 102 102 NO mendelevium 69 101 Md Er 167 100 100 fm fm HO 165 99 ES Dy dysprosium 163 98 Cf Tb 159 97 97 berkelium Gd 157 157 157 157 157 157 157 Eu ^{europium} 152 95 95 americium Sm 150 94 Pu plutonium **Np** Teptunium oromethium Pm ⁶¹ 92 038 238 ⁰⁰ Nd praseodymium 141 91 Pa protactinium 231 Pr 59 Cerium 140 90 90 90 232 232 La lanthanum 139 AC actinium lanthanoids actinoids

The volume of one mole of any gas is $24\,dm^3$ at room temperature and pressure (r.t.p.).

16