

UNIVERSITY OF CAMBRIDGE INTERNATIONAL EXAMINATIONS International General Certificate of Secondary Education

	CANDIDATE NAME			
	CENTRE NUMBER		CANDIDATE NUMBER	
* 4 5	PHYSICAL SCIENCE			0652/51
7 2	Paper 5 Practic	al Test	Oc	tober/November 2013
8				1 hour 30 minutes
	Candidates answer on the Question Paper.			
⁸	Additional Mater	ials: As listed in the Confidential Instructions.		
*	READ THESE I	NSTRUCTIONS FIRST		

Write your Centre number, candidate number and name on all the work you hand in.

Write in dark blue or black pen.

You may use a pencil for any diagrams or graphs.

Do not use staples, paper clips, glue or correction fluid.

DO NOT WRITE IN ANY BARCODES.

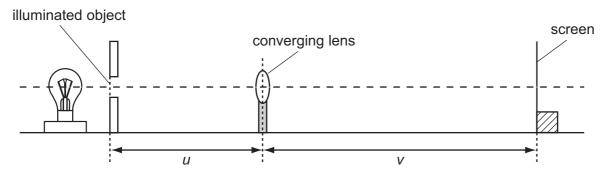
Answer all questions.

Electronic calculators may be used.

You may lose marks if you do not show your working or if you do not use appropriate units. Chemistry practical notes for this paper are printed on page 8.

At the end of the examination, fasten all your work securely together. The number of marks is given in brackets [] at the end of each question or part question.

For Examiner's Use		
1		
2		
Total		


This document consists of 7 printed pages and 1 blank page.

1 You will investigate the formation of an image by a converging lens using the experimental set-up shown in Fig. 1.1.

For Examiner's Use

[1]

- (a) (i) Place the lens a distance u = 45.0 cm from the illuminated object (the triangular hole in the card).
 - Switch on the lamp so that an image of the illuminated object can be seen on the screen.
 - Adjust the position of the screen by moving it backwards and forwards along the bench, until a sharp image of the illuminated object is formed on the screen.
 - Measure, to the nearest 0.1 cm, the image distance *v* from the screen to the lens.
 - Record the distance *v* in Table 1.1.

object distance u/cmimage distance v/u45.035.030.025.020.0

Table 1.1

- (ii) Repeat the procedure described in (i) for values of u = 35.0 cm, 30.0 cm, 25.0 cm, and 20.0 cm.
- (iii) Complete the remaining boxes in the table by filling in the values of the ratio v/u, the ratio of image distance to object distance. [1]

3

(b) State one precaution that you took whilst carrying out the experiment to ensure that the readings you obtained were reliable.

For Examiner's Use

(iii) The focal length, <i>f</i> , of the lens is given by the formula $f = \frac{1}{\text{gradient}}$ Determine the focal length of the lens.	For Examiner's Use
<i>f</i> = cm	[2]
(d) This experiment is unsuitable for values of <i>u</i> close to the value of <i>f</i> .	
Use your observations from the experiment to explain this.	
	[1]

- 2 You are going to carry out a series of tests to identify compound X.
 - (a) Heat the hard glass test-tube containing **X** until there is no further visible change.

Record your observation below and leave this test-tube to cool. You will be using the contents of this test-tube in (c)(i).

observation [1] (b) (i) Place two spatula loads of X into a test-tube and add about 4 cm^3 of dilute hydrochloric acid. Pass the gas produced through limewater in another test-tube. Keep the mixture of X and acid for (b)(ii). Record your observations, identify the gas produced, and the anion in X. observations name of gas name of anion [4] (ii) Transfer the contents of the test-tube from (b)(i) to the small beaker and add excess dilute sodium hydroxide. Record your observations and suggest the name of the metal cation in X. observations name of metal cation [2] (c) (i) The hard glass test-tube and its contents from (a) should now have cooled. Add about 8 cm³ dilute nitric acid, stir and wait for 2 minutes. Then filter the mixture into two test-tubes for use in (c)(ii) and (c)(iii). State the colour of the filtrate.

.....[1]

For Examiner's

(ii) To one of the test-tubes containing the filtrate, slowly add ammonia solution until there is no further change. Record your observations and suggest the formula of the cation in X. observations formula of cation [3] (iii) Carefully pour off some of the filtrate from the other test-tube from (c)(i), leaving behind about 1 cm depth of filtrate. Add a piece of magnesium ribbon which is about 1 cm in length. Record your observations. observations [2] (iv) Suggest what type of reaction has taken place in (c)(iii).[1] (d) Using your observations for (a), (b) and (c), identify compound X. [1] compound **X** is

For

Examiner's Use

BLANK PAGE

7

CHEMISTRY PRACTICAL NOTES

Test for anions

anion	test	test result
carbonate (CO ₃ ²⁻)	add dilute acid	effervescence, carbon dioxide produced
chloride (C <i>l</i> ⁻) [in solution]	acidify with dilute nitric acid, then add aqueous silver nitrate	white ppt.
nitrate (NO ₃ ⁻) [in solution]	add aqueous sodium hydroxide then aluminium foil; warm carefully	ammonia produced
sulfate (SO ₄ ²⁻) [in solution]	acidify then add aqueous barium chloride <i>or</i> aqueous barium nitrate	white ppt.

Test for aqueous cations

cation	effect of aqueous sodium hydroxide	effect of aqueous ammonia
ammonium (NH ₄ ⁺)	ammonia produced on warming	-
copper(II) (Cu ²⁺)	light blue ppt., insoluble in excess	light blue ppt., soluble in excess giving a dark blue solution
iron(II) (Fe ²⁺)	green ppt., insoluble in excess	green ppt., insoluble in excess
iron(III) (Fe ³⁺)	red-brown ppt., insoluble in excess	red-brown ppt., insoluble in excess
zinc (Zn ²⁺)	white ppt., soluble in excess giving a colourless solution	white ppt., soluble in excess giving a colourless solution

Test for gases

gas	test and test results
ammonia (NH ₃)	turns damp red litmus paper blue
carbon dioxide (CO ₂)	turns limewater milky
chlorine (Cl ₂)	bleaches damp litmus paper
hydrogen (H ₂)	"pops" with a lighted splint
oxygen (O ₂)	relights a glowing splint

Permission to reproduce items where third-party owned material protected by copyright is included has been sought and cleared where possible. Every reasonable effort has been made by the publisher (UCLES) to trace copyright holders, but if any items requiring clearance have unwittingly been included, the publisher will be pleased to make amends at the earliest possible opportunity.

University of Cambridge International Examinations is part of the Cambridge Assessment Group. Cambridge Assessment is the brand name of University of Cambridge Local Examinations Syndicate (UCLES), which is itself a department of the University of Cambridge.