MARK SCHEME for the May/June 2011 question paper

for the guidance of teachers

0620 CHEMISTRY

0620/31

Paper 3 (Extended Theory), maximum raw mark 80

This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began, which would have considered the acceptability of alternative answers.

Mark schemes must be read in conjunction with the question papers and the report on the examination.

• Cambridge will not enter into discussions or correspondence in connection with these mark schemes.

Cambridge is publishing the mark schemes for the May/June 2011 question papers for most IGCSE, GCE Advanced Level and Advanced Subsidiary Level syllabuses and some Ordinary Level syllabuses.

	Page 2			Mark Scheme: Teachers' version	Syllabus	Paper
				IGCSE – May/June 2011	0620	31
1	(a)	F or	в	diffusion / fractional distillation		[1]
	(b)	A		simple distillation		[1]
	(c)	D		chromatography		[1]
	(d)	Е		filtration		[1]
	(e)	С		evaporation		[1]
	(f)	В		fractional distillation		[1]
2	(a)		not	osynthesis or a photochemical reaction an example, question requires a process devices which convert light into electricity		[1]
		(ii)	cell acc e	ept battery generator		[1]
	(b)			ect formula		[1]
			lf co corr 6x a do N	d following marks conditional on correct formula valent mark 1 only ect charges nd 2o around anion IOT penalise for incorrect coding ore electrons around potassium		[1] [1]
		(ii)	corr	ect formula		[1]
			con 2 bp	nic mark 1 only d and 2 nbp around selenium and 3 nbp around both chlorine atoms		[1] [1]
			high cond is so in or harc any note com		rganic solvents,	[2]

	Page 3			Mark Scheme: Teachers' version	Syllabus	Paper		
				IGCSE – May/June 2011	0620	31		
	(c)	 base not alkali accepts a proton accepts hydrogen ion / H⁺ only [1] proton and H⁺ [2] 						
3	(a)	any four max 4 carbon forms carbon dioxide / carbon monoxide						
		this is a gas it escapes / blown out / diffuses						
		silicon forms silicon(IV) oxide / silica / silicon(IV) oxide present in impure iron						
		silicon(IV) oxide reacts with calcium oxide to form slag or calcium silicate slag removed from surface						
		accept skimmed, syphoned, poured off						
		acc	ept c	correct formula or equations um oxide reacts with silicon		max [4]		
		not	calci	um oxide reacts with silicon				
	(b)	(i)	any	sensible suggestion - harder/stronger/can be t	tailored for a spe	ecific use/more		
				stant to corrosion steel does not rust		[1]		
		(ii)		steel – cars or any vehicle/bicycles/white goods/s lings/ships/pipes/machinery etc.	screws or nails/roo	of/bridges/tools/ [1]		
				nless steel – chemical plants/cooking utensils/jew nen sinks/pipes/etc.	ellery/cutlery/surgi	cal equipment/ [1]		
	(c)	(i)	ener not	ng attractive forces / strong bonds / bonds hard t gy to break bonds between ions, not between positive and negative ic between electrons		s a lot of [1]		
			betw	veen positive ions and (negative) electrons / opposit	te charges attract	[1]		
		(ii)	beca	ause the <u>layers, lattice or rows</u> of <u>ions/cations</u>		[1]		
				ept sheets of ions atoms / molecules / protons / nuclei				
						[4]		
			Can	move / slip / slide past each other		[1]		
4	(a)	(i)		$S + 3O_2 \rightarrow 2ZnO + 2SO_2$ palanced only [1]		[2]		
		 (ii) two reagents from named metal(s) more reactive than zinc/carbon monoxide not hydrogen 			ide [2]			
		(iii)	-	have different boiling points nium will distil first then zinc leaving lead/lead distill	ed last	[1] [1]		

Page 4		je 4	Mark Scheme: Teachers' version	Syllabus	Paper
			IGCSE – May/June 2011	0620	31
		then r	nigh yield need low temperature rate would be too slow or uneconomic russion of optimum temperature could score mark 1	and 2	[1] [1]
		does	nce of catalyst would increase rate (at same temper not alter the yield (at that temperature) nomic rate at lower temperature, therefore higher yie		[1] [1]
		-	r pressure which would increase yield / rate nigh enough / high pressure expensive		[1] [1] max [4]
	accept reverse arguments note increase yield ≡ position of equilibrium to right				
5	(a)	(i) 2	Li + 2HI \rightarrow 2LiI + H ₂		[1]
	((ii) z	inc carbonate + hydriodic acid $ ightarrow$ zinc iodide + carb	on dioxide + water	[1]
	(i	iii) N	$IgO + 2HI \rightarrow MgI_2 + H_2O$		[1]
	• •		on 1 is redox / Li/2HI reaction reason either oxidation number/state / electron trans	sfer	[1] [1]
	(c)	with h	ydriodic acid – iodine formed / goes <u>dark brown</u> / gre	ey/black solid	[1]
	not purp		urple vapour not purple/black solution		
	with hydrobron / brown vapour		ydrobromic acid – bromine formed / goes orange / y /n vapour	yellow / brown / redd	lish brown / red [1]
		note	can accept brown for iodine provided bromine is diffe	erent orange/brown e	etc.
	(d)	• •	ne reaction is exothermic / reaction produces heat/er Il the sodium hydroxide used up/neutralised / reactio		[1] [1]
	(• •	dding colder acid / no more heat produced not given in (d)(i) any comments such as "reaction l	nas stopped" can gai	[1] in mark
	no for		.33 / 1.3 / 1.3333 (mol/dm ³) scores both marks ot 1.34 or a correct method – $M_1 V_1$ / moles of NaOH = 0.02 vith an incorrect answer only [1]		[2]

	Page 5		5	Mark Scheme: Teachers' version	Syllabus	Paper
		.		IGCSE – May/June 2011	0620	31
6	(a)	(i)	to m bute acce alum	king / heat with catalyst ake butane ene reacts with steam/water / hydrated ept heat and catalyst for cracking but if spec ninosilicates / silica / aluminium oxide/alumina / o mium oxide		
		 (ii) glucose / sugar changed to alcohol / ethanol accept an unbalanced equation 				[2]
			[1]			
	(b)	but CH hyd	[1] [1]			
	(c)	(i)	este	r		[1]
		(ii)	C ₆ H igno	₁₂ O ₂ ore CH₃COOC₄H₃		[1]
		(iii)	corre	ect structural formula of butyl ethanoate showing all	bonds	[2]
7	(a)			is magnesium ost reactive or fastest reaction		[1] [1]
		metal B is aluminium cond faster reaction after removal of oxide layer / it would give more hydroge more reactive than zinc				[1] gen / aluminium [1]
		metal C is zinc zinc least reactive NOTE MAX [5]				[1] [1]
		If you encounter different reasoning which is correct, please award the appropriate				oriate marks.
	(b)	for	magn	nesium and zinc same <u>volume</u> of hydrogen		[1]
		because both have valency of 2 / 1 mole of metal gives 1 mole of hydrogen / 1 reacts with 2 moles of acid				1 mole of metal [1]
		bigger volume for aluminium because its valency is 3 / 1 mole of m hydrogen / 1 mole of metal reacts with 3 moles of acid			mole of metal giv	es 1.5 moles of [1]
		lf y	ou en	counter different reasoning which is correct, please	award the approp	oriate marks.
	accont			palanced equations		

accept balanced equations **accept** ionic charges as alternative to valency

	Page 6		Mark Scheme: Teachers' version	Syllabus	Paper
			IGCSE – May/June 2011	0620	31
8	(a)	accept n accept n accept n	 polymer only product / only one product nonomer has C=C nonomer and polymer have same empirical formula to loss of material in polymerisation one monomer 		[1]
		condens	ation – polymer and water / small molecule formed		[1]
					[1]
	(b)	-CH ₂ – C	Ch-		
	()	repeat u	nit correct		[1]
		COND C	ontinuation		[1]
	(c)	CH ₂ =CHOOCCH ₃			[1]
	()				
	(a)		₂) ₄ CONH(CH ₂) ₆ NH- mide correct linkage		[1]
		correct re	epeat units		[1]
		continuation not NH ₂ or COOH endings			[1]
					[Total: 80]