MARK SCHEME for the May/June 2011 question paper

for the guidance of teachers

0620 CHEMISTRY

0620/32

Paper 3 (Extended Theory), maximum raw mark 80

Mark schemes must be read in conjunction with the question papers and the report on the examination.

• Cambridge will not enter into discussions or correspondence in connection with these mark schemes.

Cambridge is publishing the mark schemes for the May/June 2011 question papers for most IGCSE, GCE Advanced Level and Advanced Subsidiary Level syllabuses and some Ordinary Level syllabuses.

Page 2		2	Mark Scheme: Teachers' version	Syllabus	Paper
			IGCSE – May/June 2011	0620	32
1	(i)	Rb /	Sr		[1]
	(ii)	Ι			[1]
	(iii)	Fe			[1]
	(iv)	Ρ			[1]
	(v)	Si			[1]
2	(a) (i)	no re	eaction		[1]
		for r	+ $Sn^{2+} \rightarrow Fe^{2+}$ + $Sn / 2Fe$ + $3Sn^{2+} \rightarrow 2Fe^{3+}$ + $3Sn$ ealising that there would be a reaction shown by an attemp ation e.g. writing Fe ₂ Sn etc. allow [1]	ot to write an	[2]
		no re	eaction		[1]
	(ii)	All th	xide, nitrogen dioxide (accept nitogen(IV) oxide/dinitrogen nree for two ept correct formulae	tetroxide), oxyger	ו [2]
		any	two correct products		[1]
	(b) (i)	tin			[1]
	(ii)		$H^- \rightarrow O_2 + 2H_2O + 4e^-$ palanced allow [1]		[2]
	(iii)	sulfu	uric acid		[1]
	• •		ore reactive than iron/steel s reactive than iron/steel		[1] [1]
	for	ms po	rrodes/reacts/loses electrons/is oxidised/is anodic/provie sitive ions (in preference to iron or steel) ORA n is cathodic for this mark.	des sacrificial pr	otection/ [1]
				dio/forme_positive	
	pre	feren	I corrodes/reacts/rusts/loses electrons/is oxidised/is anotice to tin). ORA is cathodic for this mark	aichorms positive	,
	allo				[1]

Page 3		Mark Scheme: Teachers' version	Syllabus	Paper		
		IGCSE – May/June 2011	0620	32		
(a) (i)	(a) (i) <u>concentration</u> of thiosulfate is proportional to volume of thiosulfate solution added (white total volume is same in all experiments) / <u>concentration</u> of acid always the same for comments based on emount (to make concentration for comparable allow [4].					
	for comments based on amount / to make experiments fair / comparable allow [1					
(ii)	240	S		[1]		
(iii)	beca	reases/reaction slower ause concentration of thiosulfate decreases uency/chances/rate of collisions decreases		[1] [1] [1]		
	one mark can be scored for less/smaller amount/smaller volume of thios collisions					
(b) rat	te incr	eases with temperature (or at 42 °C) ORA		[1]		
particles/molecules/ions move faster or gain energy / ORA (don't accept reactants or atoms)						
more collisions / ORA						
gr	eater f	rk is for qualification of the collisions) i.e. frequency / more per unit time/more often /greater chance e effective/more successful/more with activation energy / C	-	collision [1]		
accept 2Fe ₂ O	$\begin{array}{c} \mathbf{t} \operatorname{Fe}_2 \mathrm{O} \\ {}_3 + 3 \mathrm{O} \\ + 3 \mathrm{C} \\ \mathrm{O}_2 \rightarrow \end{array}$	-		[1]		
CaO +	+ SiO ₂	se equation $_{2} \rightarrow CaSiO_{3}$ $SiO_{2} \rightarrow CaSiO_{3} + CO_{2}$		[1]		
three more equations or comments carbon <u>burns</u> to form carbon dioxide this reaction is <u>exothermic</u> or <u>produces heat</u> carbon dioxide is <u>reduced</u> to carbon monoxide carbon monoxide <u>reduces</u> hematite to iron carbon <u>reduces</u> hematite to iron limestone removes silica <u>which is an impurity</u> to form slag <u>which is a waste product</u>						

limestone decomposes or symbol/word equation

Pa	ge 4	Mark Scheme: Teachers' version	Syllabus	Paper
		IGCSE – May/June 2011	0620	32
(a)	Zn + H ₂	$SO_4 \rightarrow ZnSO_4 + H_2 / Zn + 2H^+ \rightarrow Zn^{2+} + H_2$		[2]
		e for correct reactants [1] correct products [1] quation is given don't penalise SO4 ^{2–} spectator ions on bot	h sides	
(b)	(exotherr	nic because) a cell produces (electrical) energy/electricity		[1]
	the next	two marks score for		
		s are lost AND gained / oxidation no. or state/valency both rect half equations i.e. $Zn \rightarrow Zn^{2+} + 2e^{-}$ and $2H^{+} + 2e^{-}$		decreases [2]
(c)	zinc cond it is	s the more reactive metal / it supplies electrons / it forms ic	ons more readily	[1] than iron [1]
(d)	replace i use (mor	zinc with magnesium ron with copper re) concentrated <u>sulfuric</u> acid se a <u>more</u> concentrated acid / a <u>more</u> concentrated solutic	'n	

any **two**

[2]

Page 5		5	Mark Scheme: Teachers' version	Syllabus	Paper
			IGCSE – May/June 2011	0620	32
6	(a) (i)	equa	at which methanol formed by forward reaction als rate it is reacting in back reaction of forward reaction equals rate of back reaction allow [1]		[1] [1]
	(ii)	high Expl	lower/decreased temperature /higher/increased pressure anations not needed but if they are given they must be cor ORE values of temperature and pressure	rect	[1] [1]
	(iii)		pressure can be used / lower pressure due to expense or not use a low temperature as rate would be too slow the rat		[1] economic [1]
	(b) (i)	este	r		[1]
	(ii)	soap	o/sodium stearate or any acceptable salt/glycerol		[1]
	(iii)	burn	ing both fuels forms carbon		[1]
			ving plants to make biodiesel removes carbon dioxide atmosphere		[1]
	(c) (i)	corre	ect SF of an octane		[1]
	(ii)	resu resu not colo	bromine (water)/bromine in an organic solvent It octane remains brown/orange/yellow/red It octane goes colourless/decolourises clear/discolours ur of reagent must be shown somewhere for [3] otherwise ept equivalent test using KMnO4 in acid or alkali	max [2]	[1] [1] [1]

	Page 6		Mark Scheme: Teachers' version	Syllabus	Paper
			IGCSE – May/June 2011	0620	32
7			1nbp around phosphorus 3nbp around each chlorine		[1] [1]
	(b) (i)	PC <i>l</i> a	$_{3}$ + 3H ₂ O \rightarrow 3HC l + H ₃ PO ₃		[1]
	(ii)	mea	solutions same concentration sure pH/pH paper/Universal indicator ochloric acid lower pH		[1] [1] [1]
			urs of Universal indicator can be given as red <orange<yell re precise pH values as long as HCl is lower than H₃PO₃</orange<yell 	ow	
	OR Acid solutions same concentration add magnesium or any named metal above Hydrogen in reactivity series b magnesium				[1] not above
		calci	ium carbonate or any insoluble carbonate ochloric acid react faster/shorter time		[1] [1]
		mea	acid solutions same concentration sure electrical conductivity ochloric acid better conductor/bulb brighter		[1] [1] [1]
		add	acid solutions same concentration sodium thiosulphate ochloric acid forms precipitate faster/less time		[1] [1] [1]
	(iii)	titrat secc	um hydroxide/sodium carbonate ion cond on correct reagent ond mark scores for mention of titration /burette/pipette/indi erimental detail not required	cator.	[1] [1]
		any	named soluble calcium salt e.g. calcium chloride/nitrate/hy	droxide	[1]
		prec	ipitation/filter/decant/centrifuge		[1]

Page 7		Mark Scheme: Teachers' version	Syllabus	Paper		
		IGCSE – May/June 2011	0620	32		
8	(a) (i)	(to avoid) carbon monoxide formation/so complete combus combustion So that CO_2 is produced	tion occurs/avoid ir	ncomplete [1]		
		CO does not dissolve/react with alkali		[1]		
	(ii)	CO ₂ is acidic		[1]		
(iii)		volume of gaseous hydrocarbon 20 cm ³ volume of oxygen used = 90 cm ³ volume of carbon dioxide formed = 60 cm ³				
		no mark for 20 cm ³ of hydrocarbon.				
	(iv)	$2C_{3}H_{6}(g)/2CxHy(g)$ + $9O_{2}(g) \rightarrow 6CO_{2}(g)$ + $6H_{2}O(I)$		[1]		
		C ₃ H ₆		[1]		
		C_3H_6 can be given in the equation for the second mark				
	(b) (i)	correct structural or displayed formula of another chlor polychlorobutane	obutane / dichlor	obutane / [1]		
(ii)		light / 200 °C / lead tetraethyl		[1]		
(iii)		cracking is the decomposition/breaking down of an alkane/hydrocarbon/petroleum heat/high temperature / Temperature between 450 °C to 800 °C OR catalyst / named catalyst to give a simpler alkane and alkene		um [1]		
				[1] [1]		
		word equation or equation as example		[1]		
		to make polymers / to increase petrol fraction / organic chemicals/petrochemica hydrogen any four				