## MARK SCHEME for the May/June 2011 question paper

## for the guidance of teachers

## 0620 CHEMISTRY

0620/33

Paper 3 (Extended Theory), maximum raw mark 80

Mark schemes must be read in conjunction with the question papers and the report on the examination.

• Cambridge will not enter into discussions or correspondence in connection with these mark schemes.

Cambridge is publishing the mark schemes for the May/June 2011 question papers for most IGCSE, GCE Advanced Level and Advanced Subsidiary Level syllabuses and some Ordinary Level syllabuses.



| Page 2 |         | 2      | Mark Scheme: Teachers' version                                                                                                                                                                  | Syllabus              | Paper                   |
|--------|---------|--------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------|-------------------------|
|        |         |        | IGCSE – May/June 2011                                                                                                                                                                           | 0620                  | 33                      |
| 1      | (i)     | Rb /   | Sr                                                                                                                                                                                              |                       | [1]                     |
|        | (ii)    | Ι      |                                                                                                                                                                                                 |                       | [1]                     |
|        | (iii)   | Fe     |                                                                                                                                                                                                 |                       | [1]                     |
|        | (iv)    | Ρ      |                                                                                                                                                                                                 |                       | [1]                     |
|        | (v)     | Si     |                                                                                                                                                                                                 |                       | [1]                     |
| 2      | (a) (i) | no re  | eaction                                                                                                                                                                                         |                       | [1]                     |
|        |         | for r  | + $Sn^{2+} \rightarrow Fe^{2+}$ + $Sn / 2Fe$ + $3Sn^{2+} \rightarrow 2Fe^{3+}$ +<br>ealising that there would be a reaction shown by an<br>ation e.g. writing Fe <sub>2</sub> Sn etc. allow [1] |                       | [2]                     |
|        |         | no re  | eaction                                                                                                                                                                                         |                       | [1]                     |
|        | (ii)    | All th | xide, nitrogen dioxide (accept nitogen(IV) oxide/din<br>nree for two<br>ept correct formulae                                                                                                    | itrogen tetroxide), o | xygen<br>[2]            |
|        |         | any    | two correct products                                                                                                                                                                            |                       | [1]                     |
|        | (b) (i) | tin    |                                                                                                                                                                                                 |                       | [1]                     |
|        | (ii)    |        | $H^- \rightarrow O_2 + 2H_2O + 4e^-$ palanced allow [1]                                                                                                                                         |                       | [2]                     |
|        | (iii)   | sulfu  | uric acid                                                                                                                                                                                       |                       | [1]                     |
|        | • •     |        | ore reactive than iron/steel<br>s reactive than iron/steel                                                                                                                                      |                       | [1]<br>[1]              |
|        | fori    | ms po  | rrodes/reacts/loses electrons/is oxidised/is anodi<br>sitive ions (in preference to iron or steel) ORA<br>n is cathodic for this mark.                                                          | c/provides sacrific   | ial protection/<br>[1]  |
|        | pre     | feren  | el corrodes/reacts/rusts/loses electrons/is oxidised/<br>ce to tin). ORA<br>is cathodic for this mark                                                                                           | 'is anodic/forms po   | ositive ions (in<br>[1] |

|   | Page 3                                                                                                                                                                                        |                                                 | Mark Scheme: Teachers' version                                                                                                           | Syllabus           | Paper             |
|---|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------|--------------------|-------------------|
|   |                                                                                                                                                                                               |                                                 | IGCSE – May/June 2011                                                                                                                    | 0620               | 33                |
| 3 | (a) (i)                                                                                                                                                                                       |                                                 | <u>centration</u> of thiosulfate is proportional to volume of volume is same in all experiments) / <u>concentration</u>                  |                    |                   |
|   |                                                                                                                                                                                               | for c                                           | comments based on amount / to make experiments f                                                                                         | air / comparable   | allow [1]         |
|   | (ii)                                                                                                                                                                                          | 240                                             | S                                                                                                                                        |                    | [1]               |
|   | (iii)                                                                                                                                                                                         | beca                                            | reases/reaction slower<br>ause concentration of thiosulfate decreases<br>uency/chances/rate of collisions decreases                      |                    | [1]<br>[1]<br>[1] |
|   |                                                                                                                                                                                               |                                                 | mark can be scored for less/smaller amount/sma<br>sions                                                                                  | aller volume of th | niosulfate / less |
|   | <b>(b)</b> rate                                                                                                                                                                               | e incre                                         | eases with temperature (or at 42 °C) ORA                                                                                                 |                    | [1]               |
|   | par<br>(do                                                                                                                                                                                    |                                                 | [1]                                                                                                                                      |                    |                   |
|   | mo                                                                                                                                                                                            |                                                 | [1]                                                                                                                                      |                    |                   |
|   |                                                                                                                                                                                               | chance/more likel<br>ergy / ORA                 | y/more collision<br>[1]                                                                                                                  |                    |                   |
| 4 | $2Fe_2O_3$                                                                                                                                                                                    | $Fe_2O + 30 + 30 + 3C + 3C + 3C + 3C + 3C + 3C$ | $A_3$ + 3CO $\rightarrow$ 2Fe + 3CO <sub>2</sub><br>C $\rightarrow$ 4Fe + 3CO <sub>2</sub><br>$\rightarrow$ 2Fe + 3CO<br>CO <sub>2</sub> |                    | [1]               |
|   | <b>one</b> acid/base equation<br>CaO + SiO <sub>2</sub> $\rightarrow$ CaSiO <sub>3</sub><br><b>or</b> CaCO <sub>3</sub> + SiO <sub>2</sub> $\rightarrow$ CaSiO <sub>3</sub> + CO <sub>2</sub> |                                                 |                                                                                                                                          |                    |                   |
|   | three m<br>carbon<br>this rea<br>carbon<br>carbon<br>carbon<br>limeston<br>to form                                                                                                            | [3]                                             |                                                                                                                                          |                    |                   |

limestone decomposes or symbol/word equation

|   | Page 4                                                                   |                                                                                                                                                                                                           | Mark Scheme: Teachers' version                                                                                                                     | Syllabus                       | Paper             |  |
|---|--------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------|-------------------|--|
|   |                                                                          |                                                                                                                                                                                                           | IGCSE – May/June 2011                                                                                                                              | 0620                           | 33                |  |
| 5 | (a)                                                                      | (a) $Zn + H_2SO_4 \rightarrow ZnSO_4 + H_2 / Zn + 2H^+ \rightarrow Zn^{2+} + H_2$                                                                                                                         |                                                                                                                                                    |                                |                   |  |
|   |                                                                          |                                                                                                                                                                                                           | e for correct reactants [1] correct products [1]<br>quation is given don't penalise SO <sub>4</sub> <sup>2–</sup> spectator ions                   | on both sides                  |                   |  |
|   |                                                                          |                                                                                                                                                                                                           |                                                                                                                                                    |                                |                   |  |
|   | (b) (exothermic because) a cell produces (electrical) energy/electricity |                                                                                                                                                                                                           |                                                                                                                                                    |                                | [1]               |  |
|   |                                                                          | the next two marks score for                                                                                                                                                                              |                                                                                                                                                    |                                |                   |  |
|   |                                                                          | electrons are lost <b>AND</b> gained / oxidation no. or state/valency <b>both</b> increases and decre / two correct half equations i.e. $Zn \rightarrow Zn^{2+} + 2e^-$ and $2H^+ + 2e^- \rightarrow H_2$ |                                                                                                                                                    |                                | and decreases [2] |  |
|   | (c)                                                                      | ) zinc<br>cond it is the more reactive metal / it supplies electrons / it forms ions more re                                                                                                              |                                                                                                                                                    | [1]<br>eadily than iron<br>[1] |                   |  |
|   | (d)                                                                      | replace i<br>use (mor                                                                                                                                                                                     | zinc with magnesium<br>ron with copper<br>re) concentrated <u>sulfuric</u> acid<br>se a <u>more</u> concentrated acid / a <u>more</u> concentrated | solution                       |                   |  |

any **two** 

[2]

| Page 5 |         |                                    | Mark Scheme: Teachers' version                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Syllabus Pape  |                              |  |
|--------|---------|------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------|------------------------------|--|
|        |         |                                    | IGCSE – May/June 2011                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0620           | 33                           |  |
| 6      | (a) (i) | equa                               | at which methanol formed by forward reaction<br>als rate it is reacting in back reaction<br>of forward reaction equals rate of back reaction allo                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | ow [1]         | [1]<br>[1]                   |  |
|        | (ii)    | high<br>Expl                       | lower/decreased temperature<br>/higher/increased pressure<br>lanations not needed but if they are given they must<br>ORE values of temperature and pressure                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | t be correct   | [1]<br>[1]                   |  |
|        | (iii)   |                                    | pressure can be used / lower pressure due to expendent of the top of |                | [1]<br>ot be economic<br>[1] |  |
|        | (b) (i) | este                               | r                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                | [1]                          |  |
|        | (ii)    | soap                               | o/sodium stearate or any acceptable salt/glycerol                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                | [1]                          |  |
|        | (iii)   | burn                               | ing both fuels forms carbon                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                | [1]                          |  |
|        |         | -                                  | ving plants to make biodiesel removes carbon dioxid<br>a atmosphere                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | de             | [1]                          |  |
|        | (c) (i) | corre                              | ect SF of an octane                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                | [1]                          |  |
|        | (ii)    | resu<br>resu<br><b>not</b><br>colo | bromine (water)/bromine in an organic solvent<br>It octane remains brown/orange/yellow/red<br>It octane goes colourless/decolourises<br>clear/discolours<br>ur of reagent must be shown somewhere for [3] othe<br>ept equivalent test using KMnO4 in acid or alkali                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | erwise max [2] | [1]<br>[1]<br>[1]            |  |

|   | Page 6  |                          | Mark Scheme: Teachers' version                                                                                                                                 | Syllabus            | Paper                  |
|---|---------|--------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------|------------------------|
|   |         |                          | IGCSE – May/June 2011                                                                                                                                          | 0620                | 33                     |
| 7 |         |                          | 1nbp around phosphorus<br>3nbp around each chlorine                                                                                                            |                     | [1]<br>[1]             |
|   | (b) (i) | PC <i>l</i> <sub>3</sub> | $_3$ + 3H <sub>2</sub> O $\rightarrow$ 3HC $l$ + H <sub>3</sub> PO <sub>3</sub>                                                                                |                     | [1]                    |
|   | (ii)    | mea                      | solutions same concentration<br>sure pH/pH paper/Universal indicator<br>rochloric acid lower pH                                                                |                     | [1]<br>[1]<br>[1]      |
|   |         |                          | urs of Universal indicator can be given as red <orang<br>re precise pH values as long as HCl is lower than H</orang<br>                                        |                     |                        |
|   |         | add                      | Acid solutions same concentration<br>magnesium or any named metal above Hydrogen<br>nesium                                                                     | in reactivity serie | [1]<br>s but not above |
|   |         |                          | ium carbonate or any insoluble carbonate<br>ochloric acid react faster/shorter time                                                                            |                     | [1]<br>[1]             |
|   |         | mea                      | acid solutions same concentration<br>sure electrical conductivity<br>ochloric acid better conductor/bulb brighter                                              |                     | [1]<br>[1]<br>[1]      |
|   |         | add                      | acid solutions same concentration<br>sodium thiosulphate<br>rochloric acid forms precipitate faster/less time                                                  |                     | [1]<br>[1]<br>[1]      |
|   | (iii)   | titrat<br>secc           | um hydroxide/sodium carbonate<br>ion <b>cond</b> on correct reagent<br>ond mark scores for mention of titration /burette/pipe<br>erimental detail not required | tte/indicator.      | [1]<br>[1]             |
|   |         | any                      | named soluble calcium salt e.g. calcium chloride/nit                                                                                                           | rate/hydroxide      | [1]                    |
|   |         | prec                     | ipitation/filter/decant/centrifuge                                                                                                                             |                     | [1]                    |

| Page 7 |         | 7                             | Mark Scheme: Teachers' version                                                                                                                   | Syllabus          | Paper                  |  |  |
|--------|---------|-------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------|-------------------|------------------------|--|--|
|        |         |                               | IGCSE – May/June 2011 0620 33                                                                                                                    |                   | 33                     |  |  |
| 8      | (a) (i) | (to a<br>com                  | void incomplete<br>[1]                                                                                                                           |                   |                        |  |  |
|        |         | CO                            | does not dissolve/react with alkali                                                                                                              |                   | [1]                    |  |  |
|        | (ii)    | CO <sub>2</sub>               | is acidic                                                                                                                                        |                   | [1]                    |  |  |
|        | vo      |                               | volume of gaseous hydrocarbon 20 $\text{cm}^3$<br>volume of oxygen used = 90 $\text{cm}^3$<br>volume of carbon dioxide formed = 60 $\text{cm}^3$ |                   | [1]<br>[1]             |  |  |
|        |         | no m                          | nark for 20 cm <sup>3</sup> of hydrocarbon.                                                                                                      |                   |                        |  |  |
|        | (iv)    | 2C <sub>3</sub> ŀ             | $H_6(g)/2CxHy(g) + 9O_2(g) \rightarrow 6CO_2(g) + 6H_2O(I)$                                                                                      |                   | [1]                    |  |  |
|        |         | OR                            | $\ldots C_{3}H_{6}(g) \ + \ 9/2O_{2}(g) \ \rightarrow \ 3CO_{2}(g) \ + \ 3H_{2}O(I)$                                                             |                   |                        |  |  |
|        |         | C₃H₀                          | 6                                                                                                                                                |                   | [1]                    |  |  |
|        |         | C <sub>3</sub> H <sub>6</sub> | $_{\rm 6}$ can be given in the equation for the second mark                                                                                      |                   |                        |  |  |
|        |         |                               | correct structural or displayed formula of another chlorobutane / dichlorobutane [1                                                              |                   |                        |  |  |
|        | (ii)    | light                         | / 200 °C / lead tetraethyl                                                                                                                       |                   | [1]                    |  |  |
|        |         |                               | king is the decomposition/breaking down of an alka                                                                                               |                   | etroleum [1]           |  |  |
|        | OR      |                               | leat/high temperature / Temperature between 450 °C to<br>DR catalyst / named catalyst<br>o give a simpler alkane and alkene                      | 5800 C            | [1]<br>[1]             |  |  |
|        |         | word                          | d equation or equation as example                                                                                                                |                   | [1]                    |  |  |
|        |         | hydr                          | nake polymers / to increase petrol fraction / org<br>rogen<br><b>four</b>                                                                        | janic chemicals/p | etrochemicals /<br>[1] |  |  |