MARK SCHEME for the May/June 2013 series

0620 CHEMISTRY

0620/31

Paper 3 (Extended Theory), maximum raw mark 80

This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began, which would have considered the acceptability of alternative answers.

Mark schemes should be read in conjunction with the question paper and the Principal Examiner Report for Teachers.

Cambridge will not enter into discussions about these mark schemes.

Cambridge is publishing the mark schemes for the May/June 2013 series for most IGCSE, GCE Advanced Level and Advanced Subsidiary Level components and some Ordinary Level components.

	Page 2			Mark	Scheme	Syllabus	Paper
				IGCSE – N	lay/June 2013	0620	31
1	(a)			ins carbon and hydrog : only / just	en		[1] [1]
				rent) boiling points : separate			[1] [1]
	(b)	bitume	en-	naking roads / roofs / w	vater-proofing, etc.		[1]
				g fraction – waxes / vas educing friction	seline / grease, etc. or mac	hinery example, e.	g. (oil a) bike / [1]
		paraff	n f	action – jet fuel / (home	e) heating or tractors or co	oking or lighting	[1]
		gasoli	ne	raction – petrol or fuel	for cars / vans / trucks		[1]
							[Total: 8]
2	(a)	3 or II					[1]
	(b)	good (cor	ductor and it is a metal	/has delocalised (free) elec	otrons	[1]
	(c)	N or F accep		As or Sb			[1]
	(d)	M₂(SC accep		6a ₂ (SO ₄) ₃			[1]
	(e)	it wou it shov	ld <u>r</u> vs	eact with/dissolves in a eact with/dissolves in a poth basic and acid pro vith both acids and bas	named alkali perties =1		[1] [1] [1] [max 2]
							[Total: 6]

Page 3		e 3 Mark Scheme Syllabus		Paper	
			IGCSE – May/June 2013	0620	31
3	(a) (i)		es have (same) surface area e amount / mass / quantity / volume / number of mo	les of carbonate	[1] [1]
	(ii)	(ii) no more bubbles / carbon dioxide or piece disappears / dissolves			
	(b) exp	(b) experiment 1 Ca ²⁺ + CO ₂ + H ₂ O			
	(c) (i)	 c) (i) more concentrated or higher concentration (of acid) (in experiment 1) accept: arguments based on collision theory 			
	(ii)	 (ii) ethanoic acid is a weak acid or hydrochloric acid is a strong acid accept: stronger or weaker 			
		ethanoic acid less ionised / dissociated / lower / smaller concentration of h accept: less hydrogen ions and vice versa argument but not dissociation o			
	(iii)	mov fewe	er temperature (particles) have less energy ing more slowly er collisions / lower collision rate		[1] [1] [1]
		fewe with	er temperature (particles) have less energy er particles collide the necessary energy to react : less energy fewer successful collisions gains all 3	marks	[1] [1] [1]
					[Total: 10]
4	it is	s satur	kane or hydrocarbon rated or only C—C single bonds to double bonds		[1] [1]
			r formula C ₆ H ₁₂ I formula CH ₂		[1] [1]
	(c) cor	rect s	tructural formula of cyclobutane		[1]

Page 4				Syllabus	Paper		
				IGCSE – May/June 2013	0620	31	
	(d)	(i)	C ₆ H acce	¹² ept: a correct structural formula		[1]	
		(ii)		e molecular formula not : chemical formula rent structural formulae / structures		[1] [1]	
	(e)	(e) add bromine (water) or (I)					
		cor	nd: (re	emains) brown or orange or red or yellow		[1]	
			ıd : ch : clea	anges from brown, etc. to colourless or decolourise r	S	[1]	
	OR potassium manganate(VII) note : oxidation state not essential but if given must be correct or [0] accept : potassium permanganate				ct or [0]	[1]	
		cond : remains pink / purple					
		cond : changes from pink to colourless (acidic) not : clear					
		cond: change from pink to green / brown (alkaline)					
						[Total: 11]	
5	(a)	(i)		metal above zinc → Mg²⁺ + 2e⁻		[1]	
		(ii)		$2Ag^+ \rightarrow Zn^{2+} + 2Ag$ a: not balanced only [1]		[2]	
		(iii)	beca	ause they can accept or gain electrons / change into	atoms or can be re	duced [1]	
	(iv)			or silver ge not essential but if given must be correct		[1]	
		(v)		and Cu ²⁺ or silver and copper ge not essential but if given must be correct		[1]	

	Page 5			Mark Scheme	Syllabus	Paper
				IGCSE – May/June 2013	0620	31
				Zn (<i>i.e. all 4 in correct order)</i> der to voltage		[1] [1]
		one relevant comment from:				[1]
		positive bigger t		activity metals are the negative electrode / copper i lectrode because copper would have the lowest vo e difference in reactivity, the bigger the voltage / zir active / more reactive metals have higher voltage	ltage / copper cel	l V = 0 / the
						[Total: 9]
6	(a)	(i)	proto	n or H ⁺ acceptor		[1]
		• •	•	sure) pH or (use) UI indicator can be implied need not be explicit		[1]
			sodiu	m hydroxide has high <u>er</u> pH / ammonia(aq) has low sentence would score 2 marks)	∕ <u>er</u> pH	[1]
			appro	priate colours with UI / appropriate numerical valu onia is closer to green, blue-green, turquoise or lig		[1]
				m hydroxide is darker blue / purple / violet		[1]
			meas	sure electrical conductivity		[1]
				e implied need not be explicit onia (aq) is the poor <u>er</u> conductor/ sodium hydroxid	e is the better con	ductor [1]

Page 6	Mark Scheme	Syllabus	Paper
	IGCSE – May/June 2013	0620	31

- (b) any five from:
 - high pressure favours lower volume side / movement to right / ammonia side, or high pressure increases the yield
 - high pressure increases rate
 - low temperature favours exothermic reaction / increases yield / favours the forward reaction
 - low temperature gives low rate or vice versa
 - catalyst increases rate or lowers activation energy
 - 450 °C low enough to give an economic yield but with catalyst gives a fast enough rate note need whole concept to get this compromise temperature point [5]
- (c) $2NH_3 + NaClO \rightarrow N_2H_4 + NaCl + H_2O$ [2] not balanced only 1
- (d) 4 hydrogen atoms 1 bonding pair each[1]2 nitrogen atoms with 1 bonding pair between them[1]one non-bonding pair on each N (need not be seen as a pair)[1]
- (e) (i) pH increases [1]
 (ii) oxygen needed for rusting / removes oxygen / reacts with oxygen [1]
 - [Total: 15]

7	(a)	(i)	add carbon / animal charcoal filter	[1] [1]
			OR	
			repeat experiment without indicator using same quantity / volume of acid	[1] [1]
		(ii)	add magnesium metal / carbonate / oxide / hydroxide to (hot) (hydrochloric) acid	[1]
			cond: until in excess or no more dissolves or reacts	[1]
			cond: filter (to remove unreacted solid)	[1]

P	Page 7		Mark Scheme	Syllabus	Paper		
			IGCSE – May/June 2013	0620	31		
(b			of moles of HC <i>l</i> = 0.020 x 2.20 = 0.044 of moles of LiOH = 0.044		[1]		
	concentration of LiOH = $0.044/0.025 = 1.769 (\text{mol}/\text{dm}^3)$						
		accept 1.75 to 1.77 need 2 dp correct answer scores = 2					
	CON						
(c	:) (for LiC <i>l</i> .2H ₂ O)						
	percenta 45.9 so		one mole = 78.5 ige water = 36 / 78.5 x 100		[1] [1]		
			s LiC <i>1.</i> 2H ₂ O		[1]		
			ard the marks if you can follow the reasoning and it g	gives 45.9% of wa	iter		
	not	note: if correct option given mark this and ignore the rest of the response					
			ax 2 for applying a correct method to another hydra ect value, working essential	te, [1] for the met	hod and [1] for		
					[Total: 10]		
8 (a) (i)	regu	Ilar arrangement / repeating pattern NOT structure		[1]		
•	 (i) attraction between opposite charges / electrostatic attraction 			[1]			
			molecules / atoms				
			action between opposite charges / electrostatic attra	ction	[1]		
(b	(b) delo		ed / mobile / free / sea of electrons		[1]		
			ions / cations ns / protons / nuclei		[1]		
			n between these electrons and ions		[1]		
(c) aiai	nt co	valent				
(0)	no i	ons			[1]		
	no d	deloc	alised / free / mobile / sea of electrons or all electro	ns	[1]		
	ionic						
			olid ions cannot move nic compound ions can move		[1] [1]		
	metalli				[.]		
			lid and liquid) metals have delocalised (or alternative	e term) electrons	[1]		
					[Total: 11]		