CAMBRIDGE INTERNATIONAL EXAMINATIONS

International General Certificate of Secondary Education

MARK SCHEME for the May/June 2013 series

0620 CHEMISTRY

0620/32

Paper 3 (Extended Theory), maximum raw mark 80

This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began, which would have considered the acceptability of alternative answers.

Mark schemes should be read in conjunction with the question paper and the Principal Examiner Report for Teachers.

Cambridge will not enter into discussions about these mark schemes.

Cambridge is publishing the mark schemes for the May/June 2013 series for most IGCSE, GCE Advanced Level and Advanced Subsidiary Level components and some Ordinary Level components.

	,	<u>, </u>		IGCSE – May/June 2013	0620	32			
1	(a)	(i)	acce	ed noble gas ept: any noble gas ept: symbol		[1]			
	1	(ii)		/ CO ₂ names not : equations		[1]			
	(b)	(i)	at hi	gen and nitrogen (in air) (react) gh temperature ept: in engines / lightning not: in exhausts		[1] [1]			
		(ii)	acce	il fuels / fuels which contain sulfur ept: named fossil fuel such as coal / oil / natural gas n / combust	;	[1] [1]			
	(iii)	dam unav	two from: lage buildings / soil acidification / leaching from vailable / kill microbes / acidify lakes / kill fish / d vth / crop loss					
	(c)	(i)		gen reacts with copper orm copper oxide (which is black)		[1] [1]			
		(ii)	measure volume at room temperature / gas has different volumes at diff temperatures / volume of gas depends on temperature / hot gas has higher voluheat causes expansion (of gases) / ORA						
	(iii)	no o	xygen left or <u>all</u> the oxygen has reacted (with coppe	er)	[1]			
	(iv)	39–4	40 cm ³ note: units required		[1]			
2	(a)		-	charge +		[1] [1]			
		C 6	⁵ Zn			[1]			
		D ¹ ; cha	⁶ 80 irge 2	<u>!</u>		[1] [1]			
		E 3	⁰ ₁ Ga			[1]			
	(b)	nun	nber	of p = number of e		[1]			
		nun	nber	of p > number of e		[1]			
		nun	nber	of p < number of e		[1]			

Mark Scheme

Syllabus

Paper

Page 2

	Pa	ge 3	}	Mark Scheme	Syllabus	Paper		
				IGCSE – May/June 2013	0620	32		
3	(a)	(i)	<u>com</u>		[1]			
			of fu	uels containing carbon / fossil fuels / hydrocarbon (fu	uels)	[1]		
			prod	luce carbon dioxide / increase percentage of CO ₂ in	atmosphere	[1]		
		[1] carbohydrate / [1]						
			[1]					
	(b)	(i)	gluc	ose or starch or carbohydrate		[1]		
	. ,	• •	oxyg	gen		[1]		
		(ii)	light	/ sunlight / sun / UV		[1]		
				rophyll accept: chloroplast		[1]		
4	(a)	(i)		reaction me / moles / molecules of reactants and products a	re different	[1]		
				ond reaction me / moles / molecules of reactants and products a	re the same	[1]		
		(ii)	first reaction (forward) reaction is endothermic second reaction (forward) reaction is exothermic					
	(b)	(i)	C ₈ H	$_{18} \rightarrow 2C_4H_8 + H_2$		[1]		
		(ii)	2H⁺	+ 2e → H ₂		[2]		
			acce	$H_3O^+ + 2e \rightarrow H_2 + 2H_2O$ ept: $-2e$ on right hand side accept: e^- e: not balanced = 1				
		(iii)	con o	rine / Cl ₂ / d: water treatment / solvents / plastics / PVC / beria / sterilising water / chlorination of water / picides / insecticides / germicides / pharmaceuticals				
			sodi	um hydroxide/NaOH		[1]		
				d: making soap / degreasing / making paper / deterring drains / alumina from bauxite / oven cleaner / b		/ paint stripper / [1]		

	Pa	ge 4	•	Mark Scheme							yllabus	Paper	
					IGO	CSE – Ma	ay/Jun	e 2013			0620	32	
5	(a)	(i)		asily mo		r low der			gradable htweight or	or water	flexible proof / insc	or bendal oluble in water	
		(ii)	chlo hydr	two fror orine rogen ch	hloride								[2]
	(b)	(i)				r semi-di	splaye	d, C = C	must be sh	nown			[1]
		(ii)		ect repe H(C ₆ H ₅)-									[1]
			cont	tinuation	າ shown								[1]
	(c)	_		two poses remove		(polyme	r and	water)	/ condens	sation	(polymeris	, ,	all) [1]
		phe	enylet	thene or	ne produ	ct (polym	er) / ad	ddition (p	oolymerisat	ion)			[1]
6	(a)	(i)	ions	can mo	move / rove / free can <u>only</u> c	ions in li	quid st	ate	е				[1] [1]
		(ii)	redu	uce melt	ing point	/ reduce	energ	y costs /	better cond	ductor	when disso	olved in cryolite	e [1]
		(iii)		ns in oxy oon mon		acts with	oxyge	n / oxidi	sed by oxy	gen / f	orms carbo	n dioxide / for	ms [1]

[1]

[1]

[1]

[1]

[1]

[1]

(iv) high melting point / inert / unreactive

of (aluminium) oxide

(c) (i) good conductor (of electricity)

low density / light / lightweight

separation of pylons / support

(b) protective / unreactive / resists / prevents corrosion / non-porous (layer)

(ii) steel core (increased) strength / prevent sagging / to increase

	Page 5	5	Mark Scheme	Syllabus	Paper 32			
			IGCSE – May/June 2013 0620					
7	(a) (i)	i) CH ₃ COOCH ₂ CH ₃ / CH ₃ CO ₂ CH ₂ CH ₃ / CH ₃ COOC ₂ H ₅ / CH ₃ CO ₂ C ₂ H ₅ / C ₂ H ₅ OOCCH ₃ / CH ₃ CH ₂ OOCCH ₃ not: -OCO- linkage [note: formulae can be displayed or semi-displayed note: penalise sticks (i.e. any missing atoms)						
	(ii)	buty	I methanoate		[1]			
	(b) (i)	fats	/ <u>vegetable</u> oils / triglycerides / lipids		[1]			
	(ii)	two	correct ester linkages, e.g. –OOC / –O ₂ C and –COC) / -CO ₂	[1]			
			[1] [1]					
	(c) (i)	to make colourless / invisible (spots) visible / coloured / seen / position made clear / indicate						
	(ii)		distance travelled by sample = R _f ance travelled by solvent (front)		[1]			
	(iii)		ple 1 R_f = 0.20 to 0.24 tartaric (acid) ple 2 R_f = 0.44 to 0.48 malic (acid)		[1] [1]			
8	(a) (i)	(the	number of particles which is equal to the number of	atoms in) 12g of o	carbon 12			
		_	mass <u>in grams</u> which contains the Avogadro's const	ant number of part	icles			
			gadro's constant or 6 to 6.023 × 10 ²³ <u>of atoms</u> icles	/ ions / molecule:	s / electrons /			
		(the	amount of substance which has a mass equal to) it nic mass / relative molecular mass <u>in grams</u>	s relative formula	mass / relative			
		_	amount of substance which has a volume equal to)	24 dm³ of a <u>gas</u> at	RTP [1]			
	(ii)	a su	ogadro's constant is the) number of particles / atoms bstance	/ ions / molecules	in one mole of			
		or the <u>r</u> or	number of carbon atoms in 12g of C(12).					
		-	number of particles / molecules in 24 dm³of a gas at	RTP				
			6.023×10^{23} (particles / atoms / ions / molecules / e	lectrons)	[1]			
	(b) CH	4 and	SO ₂		[1]			
	2/1	6 = 1/	/8 or 0.125 moles of CH ₄ AND 8/64 = 1/8 or 0.125 m	oles of SO ₂	[1]			

Page 6	Mark Scheme	Syllabus	Paper
	IGCSE – May/June 2013	0620	32
	-		

(c) (i) 4.8/40 = 0.12 moles of Ca 3.6/18 = 0.2 moles of H_2O **both** correct [1] (ii) Ca is in excess (no mark) (because 0.12 moles of Ca need) 0.24 moles / 4.32 g of H₂O [1] there is not enough / there are 0.2 moles / 3.6 g of H₂O [1] Ca is in excess (no mark) (because 0.2 moles / 3.6g of water will react with) 0.1moles/4.0g of Ca [1] there is more than that / there are 0.12 moles / 4.8 g of Ca [1] or Ca is in excess (no mark) because the mole ratio Ca:H₂O is 3:5 / mass ratio 4:3 [1] which is bigger than the required mole ratio of 1:2 / mass ratio 10:9 [1] Ca is in excess (no mark) because the mole ratio H₂O:Ca is 5:3 / mass ratio 3:4 [1] which is smaller than the required mole ratio of 2:1 / mass ratio 9:10 [1] (iii) $0.02 \times 40 = 0.8$ (g) [1]