UNIVERSITY OF CAMBRIDGE INTERNATIONAL EXAMINATIONS International General Certificate of Secondary Education | CANDIDATE
NAME | | | | |-------------------|-----------------------------|---------------------|-------------------| | CENTRE
NUMBER | | CANDIDATE
NUMBER | | | CHEMISTRY | | | 0620/22 | | Paper 2 | | | May/June 2013 | | | | | 1 hour 15 minutes | | Candidates an | swer on the Question Paper. | | | | No Additional N | Materials are required. | | | ## **READ THESE INSTRUCTIONS FIRST** Write your Centre number, candidate number and name in the spaces at the top of this page. Write in dark blue or black pen. You may need to use a pencil for any diagrams, graphs or rough working. Do not use staples, paper clips, highlighters, glue or correction fluid. DO NOT WRITE IN ANY BARCODES. Answer all questions. Electronic calculators may be used. A copy of the Periodic Table is printed on page 16. You may lose marks if you do not show your working or if you do not use appropriate units. At the end of the examination, fasten all your work securely together. The number of marks is given in brackets [] at the end of each question or part question. 1 The structures of five substances, A, B, C, D and E, are shown below. C Α В Na⁴ Cl-Na Cl Н Cl-Cl-Na Na Na⁴ C1-Na Cl-Cl - (a) Answer the following questions about these substances. Each substance may be used once, more than once or not at all. - (i) Which **two** substances are elements? and - (ii) Which substance has a giant covalent structure? - (iii) Which substance turns damp red litmus blue? - (iv) Which substance is a product of fermentation? combined - (v) Which substance is used as a lubricant? [6] - (b) Complete the following sentences about compounds using words from the list below. copper covalent [Total: 10] atom 2 The table shows how the density of the transition elements varies across Period 4. | element | Ti | V | Cr | Mn | Fe | Со | Ni | Cu | |----------------------------------|------|---|------|------|------|------|------|------| | density in g per cm ³ | 4.50 | | 7.20 | 7.20 | 7.86 | 8.90 | 8.90 | 8.92 | | (a) | Describe the general trend in density of the transition elements across Period 4. | | |-----|--|-----| | | | [1] | | (b) | Suggest a value for the density of vanadium, V. | | | | | [1] | | (c) | Many transition elements and their compounds are catalysts. What is the meaning of the term <i>catalyst</i> ? | | | | | [1] | | (d) | Describe three properties of transition metals, apart from catalytic activity, which metals them different from Group I metals. | ake | | | 1 | | | | 2 | | | | 3 | [3] | | (e) | Iron reacts with steam to form an oxide with the formula Fe_3O_4 . Complete the symbol equation for this reaction. | | | | Fe(s) + $H_2O(g) \rightarrow Fe_3O_4(s) + 4H_2(g)$ | [2] | | (f) | Iron reacts with sulfuric acid. Complete the word equation for this reaction. | | | | iron + sulfuric acid \rightarrow + | | | | | [2] | [Total: 10] 3 The concentration of alkali in a solution can be determined from the results of a titration. The apparatus used is shown below. (a) State the name of each of these pieces of apparatus. | A |
 |
 |
 |
٠. | - |
 |
 |
 |
 |
 | | | | | - |
 | | | | |
 | | |---|------|------|------|--------|---|------|------|------|------|------|--|--|--|--|---|------|--|--|--|--|------|--| (b) The graph below shows how the pH changes when an alkali is neutralised by an acid. For Examiner's Use (i) What is the pH of the alkali at the start of the experiment? pH =[1] (ii) What volume of acid has been added when the pH is 12? cm³ [1] (iii) What is the value of the pH when the solution is neutral? Put a ring around the correct answer. pH 0 pH 5 pH 7 pH 9 pH 14 [1] | (c) | (i) | Which two of the following compounds could a farmer use to control the pH of soils which are too acidic? | For
Examiner's
Use | |-----|------|---|--------------------------| | | | Tick two boxes. | | | | | aluminium chloride | | | | | calcium carbonate | | | | | calcium oxide | | | | | copper sulfate | | | | | potassium chloride [2] | | | | (ii) | Explain why farmers need to control the pH of soils which are too acidic. | | | | | | | | | | [1] | | | | | [Total: 10] | | - 4 Methane belongs to the alkane homologous series. - (a) (i) Draw the structure of methane showing all atoms and bonds. [1] (ii) State the name of **one** other member of the alkane homologous series. [1] (iii) Methane is an atmospheric pollutant. Give **one** natural source of methane in the atmosphere.[1] (iv) Methane burns in excess oxygen to form carbon dioxide and water. Complete the symbol equation for this reaction. $$CH_4 +O_2 \rightarrow + 2H_2O$$ [2] **(b) (i)** In an oil refinery, hydrocarbons are separated into different fractions. On what physical property does this fractionation depend?[1] (ii) Match the fraction on the left with the use of the fraction on the right. The first one has been done for you. [4] [Total: 10] - **5** Clean air is a mixture of gases. - (a) State the composition of clean air and describe how it gets polluted by gases such as sulfur dioxide, carbon monoxide and oxides of nitrogen. In your answer, include - the names and percentages of the two main gases present in clean air, | • | the | source | of | each | of | the | pollutant | gases | named | above | |---|-----|--------|----|-------|-----|-----|-------------|-------|---------|-------| | • | uic | 300100 | O1 | Cacii | OI. | uic | politicalit | gascs | Hailicu | above | | [5] | | |-----|--| | | | - **(b)** Lead is an atmospheric pollutant. It is extracted by heating ores containing lead sulfide. - (i) The structure of lead sulfide is shown below. Deduce the simplest formula for lead sulfide.[1] (ii) The last stage in extracting lead involves reducing lead(II) oxide with carbon. $$PbO + C \rightarrow Pb + CO$$ How does this equation show that lead oxide gets reduced?[(c) Dichloroethane used to be added to petrol to prevent the build-up of lead deposits in car engines. The structure of dichloroethane is shown below. | | H | H | | |-----|-----|-----|-----| | C1- | -ċ- | -¢- | -C1 | | | Н | H | | | (i) | Dichloroethane is a liquid. | |-----|--| | | Describe the arrangement and closeness of the particles in a liquid. | | | arrangement | | |------|--|--| | | closeness | | | (ii) | Deduce the molecular formula for dichloroethane. | | | (iii) | Calculate the | he rela | ative | molecular | mass | of | dichloroethane. | You | must | show | all | your | |-------|---------------|---------|-------|-----------|------|----|-----------------|-----|------|------|-----|------| | | working. | | | | | | | | | | | | [2] [Total: 12] 6 (a) The table below describes the reaction of some metals with water. For Examiner's Use | metal | reaction | |-----------|--| | calcium | reacts rapidly with cold water producing many bubbles of gas | | magnesium | reacts very slowly with cold water but reacts rapidly with steam | | rubidium | reacts very rapidly with cold water producing many bubbles of gas and will explode | | zinc | only reacts with steam when in powdered form and heated very strongly | Put these metals in order of their reactivity. | least reactive | | → most rea | ctive | |----------------|--|------------|---------| | | | | | | | | |
[2] | **(b)** The list below shows part of the reactivity series. Give the names of **two** metals from this list that can be extracted from their oxide ores by heating with carbon. and[1] - (c) A magnesium atom has 12 electrons. - (i) Complete the diagram below to show the electronic structure of an atom of magnesium. [2] (ii) An isotope of magnesium has a nucleon number (mass number) of 26. Deduce the number of neutrons in one atom of this isotope of magnesium. ______[1] [Total: 6] 7 The table shows some properties of sulfur, sucrose (sugar) and zinc chloride. | property | sulfur | sucrose | zinc chloride | |---|-----------|------------------|---------------| | state at room temperature | solid | solid | solid | | solubility in water | insoluble | soluble | soluble | | electrical conductivity of aqueous solution | | does not conduct | conducts | | structure | molecular | molecular | ionic | | (a) | Suggest why an aqueous solution of zinc chloride conducts electricity. | | |-----|---|-----| | | | [1] | | (b) | Suggest why an aqueous solution of sucrose does not conduct electricity. | | | | | [1] | | (c) | Suggest how you could separate a mixture of solid sucrose and solid sulfur. | | | | | | | | | | | | | [2 | | (d) | Molten zinc chloride can be electrolysed using the apparatus shown below. | | - (i) Which one of the letters, A, B, C or D, represents the cathode? - (ii) Which one of the following substances is the most suitable for use as an electrode in this electrolysis?Put a ring around the correct answer. copper graphite sodium sulfur | (i | iii) | Predict the products of | the electrolysis of molten zi | nc chloride at | |--------------------------|------------------------|---|-------------------------------|--| | | | the negative electrode, | | | | | | the positive electrode. | | [2] | | (i | iv) | Describe a test for chlo | ride ions. | | | | | test | | | | | | result | | [3] | | | | | | [Total: 11] | | for se
After
taste | eve
2 r
sw
10 | ral minutes.
ninutes, she used a stra
reet. | w to taste some of the tea fi | of cold tea and left it undisturbed from the top of the glass. It did not ion at the top of the glass tasted | | | | cold tea
sugar | | | | | at | the start | after 2 minutes | after 10 minutes | | (a) | Use | the kinetic particle thec | ory to explain these observa | itions. | [4] | © UCLES 2013 0620/22/M/J/13 8 **(b)** Glucose is a sugar. The structure of a glucose molecule is shown below. For Examiner's Use | (i) | How many different types of atom are there in one molecule of glucose? | | |-------|--|------------| | | | [1] | | (ii) | How many hydrogen atoms are there in one molecule of glucose? | | | | | [1] | | (iii) | On the diagram of the glucose molecule above, put a ring around an alcofunctional group. | hol
[1] | | (iv) | Glucose is oxidised in the body by a process called respiration. Complete the word equation for respiration. | | | | glucose + oxygen \rightarrow + water | | | | | [1] | | (v) | When glucose solution is fermented, ethanol is produced. Describe how you would carry out fermentation in the laboratory. | | | | | | | | | | | | | [2] | | (vi) | State one use of ethanol other than in alcoholic drinks. | | | | | | [Total: 11] ## **BLANK PAGE** ## **BLANK PAGE** DATA SHEET The Periodic Table of the Elements | | | | | | | | | Ğ | Group | | | | | | | | | |--------|-----------------------|--|-----------------------------------|----------------------------------|------------------------------------|----------------------------|----------------------------------|-----------------------------------|------------------------------------|--------------------------------------|-----------------------------------|--------------------------------------|------------------------------------|------------------------------------|-----------------------------------|----------------------------|------------------------------------| | = | | | | | | | | | | | | = | ≥ | > | <u></u> | = | 0 | | | | | | | | | T Hydrogen | | | | | | | | | | 4 He Helium | | Ber 4 | 9 Be | | | | | | | | | | | 11 Boron 5 | 12
Carbon | 14 N Nitrogen 7 | 16
O Oxygen | 19 Fluorine | 20
Neon 10 | | Mag 12 | 24 Mg Magnesium | I | | | | | | | | | | 27
A1
Aluminium
13 | 28
Si
Silicon | 31
Phosphorus | 32
S
Suffur
16 | 35.5 C 1 Chlorine | 40
Ar
Argon | | 200 | Calcium | Scandium 21 | 48 Titanium 22 | 51
V
Vanadium
23 | Cr
Chromium
24 | Mn
Manganese | 56
Fe
Iron | 59
Co
Cobalt | 59 X Nickel | 64
Copper
29 | 65
Zn
Zinc | 70
Ga
Gallium
31 | 73
Ge
Germanium
32 | 75
As
Arsenic | Se Selenium 34 | 80
Br
Bromine | 84 Kr
Krypton 36 | | 38 St | St
Strontium
38 | 89 Y | 2r
Zirconium
40 | 93
Nb
Niobium
41 | 96
Mo
Maybdenum
42 | Tc Technetium | Ru Ruthenium | 103
Rh
Rhodium
45 | | | 112
Cd
Cadmium
48 | 115
In
Indium | Sn
Tn
50 | 122
Sb
Antimony
51 | 128 Te Tellurium 52 | 127 T lodine | 131
Xe
Xenon
54 | | 26 E | 137 Ba Barium | 139 La Lanthanum s | 178
Hf
Hafnium
72 | 181
Ta
Tantalum | 184 W
Tungsten 74 | 186 Re Rhenium 75 | 190
Os
Osmium
76 | | | 197
Au
Gold | 201
Hg
Mercury
80 | 204 T 1 Thallium | 207 Pb Lead | | Po
Polonium
84 | At
Astatine
85 | Radon 86 | | 88 | 226 Ra Radium | 227
Ac
Actinium † | | | | | | | | | | | | | | | | | ctir | anoi
oid (| *58-71 Lanthanoid series
190-103 Actinoid series | | 140
Ce
Cerium
58 | Pr
Praseodymium
59 | 144 Nd Neodymium 60 | Pm Promethium 61 | Sm
Samarium
62 | 152
Eu
Europium
63 | 157
Gd
Gadolinium
64 | 159
Tb
Terbium
65 | 162
Dy
Dysprosium
66 | 165
Ho
Holmium
67 | 167
Er
Erbium
68 | 169
Tm
Thulium
69 | 173 Yb Ytterbium 70 | 175
Lu
Lutetium
71 | | ∞ × | а х о | a = relative atomic mass X = atomic symbol b = proton (atomic) number | nic mass ool ic) number | 232
Th
Thorium | Pa Protactinium | | Neptunium | Pu
Plutonium
94 | Am
Americium
95 | Cm
Curium
96 | Bk Berkelium | Cf
Californium
98 | Es
Einsteinium
99 | Fm
Fermium
100 | | Nobelium | Lr
Lawrendu
103 | The volume of one mole of any gas is 24 dm^3 at room temperature and pressure (r.t.p.). Permission to reproduce items where third-party owned material protected by copyright is included has been sought and cleared where possible. Every reasonable effort has been made by the publisher (UCLES) to trace copyright holders, but if any items requiring clearance have unwittingly been included the publisher will be pleased to make amends at the earliest possible opportunity. University of Cambridge International Examinations is part of the Cambridge Assessment Group. Cambridge Assessment is the brand name of University of Cambridge Local Examinations Syndicate (UCLES), which is itself a department of the University of Cambridge.