CAMBRIDGE INTERNATIONAL EXAMINATIONS

International General Certificate of Secondary Education

MARK SCHEME for the May/June 2014 series

0620 CHEMISTRY

0620/33

Paper 3 (Extended Theory), maximum raw mark 80

This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began, which would have considered the acceptability of alternative answers.

Mark schemes should be read in conjunction with the question paper and the Principal Examiner Report for Teachers.

Cambridge will not enter into discussions about these mark schemes.

Cambridge is publishing the mark schemes for the May/June 2014 series for most IGCSE, GCE Advanced Level and Advanced Subsidiary Level components and some Ordinary Level components.

	Page 2		Mark Scheme		Paper
			IGCSE – May/June 2014	0620	33
1	(a)	carbor	n dioxide (1)		[1]
	(b)	prope	ne (1)		[1]
	(c)	krypto	n (1)		[1]
	(d)	nitroge	en (1)		[1]
	(e)	fluorin	e (1)		[1]
	(f)	sulfur	dioxide (1)		[1]
	(g)	hydro	gen (1)		[1]
					[Total: 7]
2	(a)	particl move collide more	ree from: es have more energy (1) faster (1) more frequently (1) carticles have energy greater than E _a nce: more colliding molecules have enough energy to	react is worth (2)	[3]
	(b)	particl	es move in all directions/randomly in both liquids and	gases (1)	
			nds/very weak forces between particles in gases (1) ules can move apart/separate (to fill entire volume) (1)	
		bonds	/forces/IMF between particles in liquids (1) ules cannot move apart/separate (so fixed volume in	liquids) (1)	[3]
					[Total: 6]
3	(a)	(i) er	nzymes (1)		[1]
		m fe	duces growth of microbes/rate of reproduction o icrobes are dormant (1) wer (enzymes) to decay food (1)	f microbes is lowe	r/
			nzymes less efficient at lower temperatures (1) ower reaction rate (1)		[2]
	(b)	rest of	t linkage (1) molecule correct and continuation shown (1) product is) water (1)		[3]

	Page 3		Mark Scheme	Syllabus	Paper
			IGCSE – May/June 2014	0620	33
	pl lig cł ca	hotosyr ght/pho hloroph arbon d	e from: Inthesis (1) Inthotochemical (1) Intology (1) Interior (1) It is and water needed (1) It is and) oxygen (1)		[3]
					[Total: 9]
4	(a) (i	fract	t limestone/calcium carbonate (1) tional distillation (1) d air (1)		[3]
	(ii		two of the oxides, C, S, P and Si, mentioned (1) on dioxide and sulfur dioxide escape/are gases (1)		
			sphorus oxide or silicon(IV) oxide react with calcium sphorus oxide or silicon(IV) oxide are acidic and cal		1)
		to fo	orm a slag or calcium silicate or calcium phosphate	(1)	
		mus	t have correct equation for one of the above reactio	ns (1)	[5]
	(b) (i	•	ce/rows/regular arrangement of cations/positive ion oile/free/delocalised/sea of electrons (1)	ns/Fe ²⁺ (1)	[2]
	(ii	•	rows of ions/ions can move past each other (1) out the metal breaking/bonds are not directional/no	ot rigid (1)	[2]
	(iii		oon particles/atoms different size (1) vents movement of rows, etc. (1)		[2]
					[Total: 14]
5	`´ hi gı	igher co reater y	action rate (1) ollision rate (1) yield or favour RHS (1) favours products because it has lower volume/fewer	product molecules (1)) [4]
	th	nis is th	emperature favour endothermic reaction (1) e back reaction/left hand side/reactants (1) rield (1)		[3]
	(c) (i	i) grea	ater surface area (1)		[1]
	(ii	can	ease reaction rate (1) use a lower temperature to have an economic rate not decrease yield (by increasing temperature).	(1)	[2]

Page 4			Syllabus	Paper
		IGCSE – May/June 2014	0620	33
(d)	onli OR add onli OR inci	d water (1) y ammonia will dissolve (1)		[2]
(e)	thir fou all t	cond line $+3 \times 155 = +465$ rd line $-3 \times 280 = (-)840$ arth line $-3 \times 565 = (-)1695$ three correct (2) three correct (1)		
		70 + 465 = 1635 0 + 1695 = 2535		
		th numerically correct (1) othermic reaction with some reasoning (1)		[4]
				[Total: 16]
				[Total: To]
6 (a)	(i)	C and H only (1)		[1]
	(ii)	only single bonds (1)		[1]
(b)) (i)	$C_nH_{2n+2}(1)$		[1]
	(ii)	$C_{14}H_{30}$ (1) (14 × 12) + 30 = 198 (g) (1)		[2]
(c)	(i)	$C_9H_{20} + 14 O_2 \rightarrow 9CO_2 + 10H_2O$ (2)		[2]
	(ii)	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	ıll in cm³ nole ratio	
		for equation as above (2)		[3]
(d)) (i)	alkanes in petrol/fuel/solvent (1) alkenes to make alcohols/plastics/polymers/solve hydrogen to make ammonia/fuel/fuel cells, etc. (1)	ents (1)	[3]
	(ii)	a correct equation for example: $C_{10}H_{22} \rightarrow C_8H_{16} + C_2H_4 + H_2$ (1)		[1]

Page 4

Syllabus

Paper

ray	ge 5	Mark Scheme	Syllabus	Paper
		IGCSE – May/June 2014	0620	33
(e)	(i) light	or lead tetraethyl/catalyst/high temperature (1)	[1]
((ii) CH ₃ -	-CHCI-CH₃ (1)		[1]
				[Total: 16]
' (a)	bauxite (1)		[1]
, ,	electrolyte alumina/aluminium oxide dissolved in molten cryolite (1) use cryolite to reduce mp/comparable idea/temperature of electrolyte 900 to 1000°C (1) electrodes carbon (1) aluminium formed at cathode/A l^{3+} + 3e \rightarrow A l (1) oxygen formed at anode/2O ²⁻ \rightarrow O ₂ + 4e (1) anode burns/reacts to carbon dioxide/C + O ₂ \rightarrow CO ₂ (1)			

(c) (i) food containers/window frames/cooking foil/cars/bikes/drink cans (1) [1]

(ii)
$$4OH^- \rightarrow O_2 + 2H_2O + 4e$$
 (2) [2]

$$4Al + 3O_2 \rightarrow 2Al_2O_3$$
 (2)

[Total: 12]