UNIVERSITY OF CAMBRIDGE INTERNATIONAL EXAMINATIONS

International General Certificate of Secondary Education

MARK SCHEME for the October/November 2010 question paper for the guidance of teachers

0620 CHEMISTRY

0620/32

Paper 3 (Extended Theory), maximum raw mark 80

This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began, which would have considered the acceptability of alternative answers.

Mark schemes must be read in conjunction with the question papers and the report on the examination.

• CIE will not enter into discussions or correspondence in connection with these mark schemes.

CIE is publishing the mark schemes for the October/November 2010 question papers for most IGCSE, GCE Advanced Level and Advanced Subsidiary Level syllabuses and some Ordinary Level syllabuses.

	Page 2							e: Teacl				Syllal			aper
				IGCSE – October/November 2010			0620		,	32					
1	(a)	Ε													[1]
	(b)	Α	С	E	ne	ed all th	nree								[1]
	(c)	Α													[1]
	(d)	F													[1]
	(e)	С													[1]
	(f)	D	F		ne	ed both	but no	t more							[1]
														[[Total: 6]
2	(a)	(i)	heat				ustion /	high ter	mperat	ture					[1]
			in ai	r/o	oxyg	en									[1]
			any	inco	orre	ct Cher	nistry M	IAX [1]							
		(ii)				→ Zn		00							[1]
							2Zn + balance	- CO₂ e, if not [[0]						
			not	carl	bon	monox	ide as a	reactar	nt /						
		(iii)	fract												[1]
			disti	llatio	ion										[1]
	(b)	(i)	mak	ing	allo	ys / bra	ıss / naı	med allo	y whic	h contain	s zinc				[1]
										oplating					[1]
								pecific ung / buck		ich depen sinks	nds on (galvanisi	ng		
							er meta		KOIO / C	on inco					
		(ii)	posi	tive	e ion	s / catio	ons								[1]
		` '	not	nuc	clei /	atoms									
			delo	cali	ised	/ free /	mobile	or sea o	of elect	trons					[1]
			bone	d is	attr	action b	etweer	ı (positiv	ve) ions	s and delo	ocalised	d electroi	ns		[1]
				e m	nust	oe clea				delocalis oving / ca					[1]
														[T	otal: 11]

Page 3			Mark Scheme: Teachers' version	Syllabus	Paper					
-			IGCSE – October/November 2010	0620	32					
(a)	 volume given off (in that 20 s interval) divided by 20 accept 48/20 for [2] Answer to 3 (a) may appear twice, both in 3 (a) and 3 (b). Please ignore in 3 (b). 									
(b)	0.6	0.6 (cm ³ /s)								
(c)		concentration of hydrogen peroxide decreases								
		for hydrogen peroxide used up ONLY [1] not reagent / reactant								
(d)	rate increases / doubles catalyst has bigger surface area / more catalyst particles exposed more collisions not more catalyst / higher concentration of catalyst / more molecules of catalyst									
	OR									
	volume of oxygen the same oxygen from hydrogen peroxide (not catalyst) amount / number of moles the same									
	OR	OR								
	amount/mass/volume/number of moles of hydrogen peroxide the same [2]									
	catalyst chemically unchanged ONLY [1] reactants have not changed (only the catalyst) [1] accept catalyst does not react [1]									
					[Total: 11]					
(a)	(i)	has has	mium is harder higher density higher melting point / boiling point / fixed points							
		acce	nger TWO ept sodium comments at be comparison chromium is hard [0]		[2]					
	(ii)	sodii chro chro / sodi chro acce	chromium and sodium have to be mentioned explication is more reactive is acceptable um is a reactive metal is not acceptable imium has more than one oxidation state, sodium has imium forms coloured compounds, sodium compoundium does not um reacts with cold water, chromium does not imium forms complex ions, sodium does not imium forms complex ions, sodium does not important important in the properties, sodium does TWO	as one nds are white	[2]					

3

4

Page 4	1	Mark Scheme: Teachers' version	Syllabus	Paper
		IGCSE – October/November 2010	0620	32
(b) (i)	resis hard any	earance/shiny/more attractive/decoration st corrosion / rusting I surface TWO I becomes harder / stronger		[2]
(ii)		SO ₄) ₃ ore correct charges on ions		[1]
(iii)	Cr ³⁺	+ 3e → Cr to Cr only ore comments about sulfate ion		[2] [1]
(iv)	oxyg	gen / O ₂		[1]
(v)		eplace chromium ions (used to plate steel) romium sulfate used up		[1]
	/ sol	per ions replaced from copper anode ution of copper sulfate does not change just that anode is not made of chromium		[1]
				[Total: 12]
5 (a) (i)	ratio not	cains carbon, hydrogen and oxygen ept example 2H : 1O contains water ore comments about carbon		[1] [1]
(ii)	<u>obta</u>	g organism / plants and animals / cells <u>iin energy</u> from food burn negates energy mark		[1] [1]
(iii)	carb	ohydrates contain oxygen		[1]
(iv)	as a	fertiliser / manure		[1]
(b) (i)	40/6	m ³ of oxygen therefore 40 cm ³ of methane 60 × 100 = 66.7 % ept 66 % and 67 % ecf		[1] [1]
(ii)		sodium hydroxide(aq) / alkali on dioxide dissolves, leaving methane		[1] [1]
				[Total: 10]

Page 5	Mark Scheme: Teachers' version	Syllabus	Paper						
	IGCSE – October/November 2010	0620	32						
(a) same general formula consecutive members differ by CH ₂ same chemical properties									
physical	nctional group properties vary in predictable way / give trend – i methods of preparation	mp increases with n	etc.						

any THREE

not kill enzymes

(iv) to prevent aerobic respiration

dioxide and water formed

(b) (i) they have the same molecular formula [1] not general formula different structures / structural formulae [1] (ii) $CH_3-CH_2-CH(OH)-CH_3 / (CH_3)_3C-OH$ [1] **not** ether-type structures NOTE butan-2-ol and 2-methylpropan-2-ol acceptable (c) (i) air/oxygen / (acidified) potassium chromate(VI) / (acidified) potassium manganate(VII) [1] must have oxidation states (ii) carboxylic acid / alkanoic acid [1] CH₃-CH₂-CH₂-COOH / C₃H₇COOH / C₄H₈O₂ [1] accept C₄H₇OOH (d) (i) measure volume of carbon dioxide [1] [1] accept day / hour for time mark [1] (ii) increase in temperature / more yeast present / yeast multiplies (iii) glucose used up [1] accept sugar not reagent / reactant concentration of ethanol high enough to kill/poison yeast / denature enzymes [1]

/ ethanol would be oxidised / ethanoic acid/ acid formed / lactic acid formed / carbon

[Total: 15]

[1]

[3]

	Page 6			Mark Scheme: Teachers' version	Syllabus	Paper
				IGCSE – October/November 2010	0620	32
7	(a)	(i)	kills	microbes / bacteria / fungi / micro-organisms etc.		[1]
	(iii) but (b) oxyge vanad not ar		as a	[1]		
			burn	/ heat sulfur in air / oxygen		[1]
			adiur an ir	m oxide / vanadium(V) oxide / vanadium pentoxide		[1] [1]
		wat		0 450 °C		[1] [1]
	(c)	(c) (i) prof		on donor		[1]
		(ii)	sulfu	sure pH / use pH paper uric acid has the lower pH ept colours / appropriate numerical values		[1] [1]
			OR			
				sure electrical conductivity uric acid is the better conductor		[1] [1]
			OR			
			etha	magnesium / named fairly reactive metal nedioic acid gives the slower reaction FE result must refer to rate not amount		[1] [1]
			OR			
			etha	a carbonate nedioic acid gives the slower reaction FE result must refer to rate not amount		[1] [1]
	(d)	(i)	how	many moles of H_2SO_4 were added = 0.02 × 0.3	= 0.006	[1]
		(ii)	how	many moles of NaOH were used = $0.04 \times 0.2 =$	0.008	[1]
	` ,			uric acid	from (i) and (ii)	[1]
	reas				nom (i) and (ii).	[1]
	(iv)	less	than 7		[1]

[Total: 15]