UNIVERSITY OF CAMBRIDGE INTERNATIONAL EXAMINATIONS

International General Certificate of Secondary Education

MARK SCHEME for the October/November 2011 question paper for the guidance of teachers

0620 CHEMISTRY

0620/33

Paper 3 (Extended Theory), maximum raw mark 80

This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began, which would have considered the acceptability of alternative answers.

Mark schemes must be read in conjunction with the question papers and the report on the examination.

• Cambridge will not enter into discussions or correspondence in connection with these mark schemes.

Cambridge is publishing the mark schemes for the October/November 2011 question papers for most IGCSE, GCE Advanced Level and Advanced Subsidiary Level syllabuses and some Ordinary Level syllabuses.

	Page 2		Mark Scheme: Teachers' version	Syllabus	Paper
			IGCSE – October/November 2011 0620		33
1	(a) (i)	Cs/	Fr		[1]
	(ii)	Br			[1]
	(iii)	U / F	Pu / Th		[1]
	(iv)	I or	At		[1]
	(v)	As			[1]
	(vi)	He /	Ne / Ar / Kr / Xe		[1]
	(b) (i)	GeC	o ₂ / GeO		[1]
	(ii)	TeB	r ₂ / TeBr ₄		[1]
	(c) (i)	Sr ²⁺			[1]
	(ii)	F ⁻			[1]
2	(a) (i)	(i) molecule / unit / simple compound / building block and used to make a polymer / big molecule / long chain / macromolecule			make a [1]
	formation of a polymer / big molecule / long chain / macromolecule or joining monomers and elimination / removal / formation of a simple or smallecule / H_2O / HCl $note$: two points needed for 1 mark in both parts				
	(ii)	three	inkage e correct monomer units inuation		[1] [1] [1]
	(b) (i)		lyst and from living organism ept: biological catalyst / protein catalyst		[1]
	(ii)	enzy	me denatured / destroyed		[1]
	(iii)	locat	matography ting agent / description of locating agent sure R _f / compare with standards		[1] [1] [1]

Page 3	Mark Scheme: Teachers' version	Syllabus	Paper
	IGCSE – October/November 2011	0620	33

3	(a)) sodium hydroxide solution warm			
		blu	ly) ammonium phosphate gives off ammonia / gas (which will turn red litmus paper e)	[1]	
		dis	lium hydroxide solution solve fertiliser in water ²⁺ gives (white) ppt	[1] [1] [1]	
		flar Ca	ne test ²⁺ brick red / orange / orange-red ₄ ⁺ no colour	[1] [1] [1]	
	(b)	pre ten N ₂	n catalyst ssure 150–300 atmospheres sperature 370–470 °C + 3H ₂ = 2NH ₃ se: units required for temperature and pressure	[1] [1] [1]	
	(c)	pot	assium / K	[1]	
	(d)	(i)	needs to be soluble / in solution (to be absorbed by plants)	[1]	
		(ii)	base proton acceptor	[1] [1]	
	(e)	pla	nt growth depends on soil acidity or pH / plants have optimum pH (for growth)	[1]	
		ado	d Ca(OH) ₂ / CaO / CaCO ₃ / lime / slaked lime / quicklime / limestone	[1]	
4	(a)	(i)	alloy / mixture iron and carbon / another metal or element etc.	[1] [1]	
		(ii)	electron loss	[1]	
	(b)		ctrons move from / lost from Mg steel / iron	[1] [1]	
	(c)	(i)	$2H^{+} + 2e \rightarrow H_{2}$ not balanced = 1	[2]	

	Page 4				Syllabus	Paper	
				IGCSE – October/November 2011	0620	33	
	((ii)		ificial protection – is a <u>cell</u> odic protection – is electrolysis NOT electrical cell		[1] [1]	
			sacr	ificial protection – electrons from more reactive meta odic protection – electrons from battery etc.	al	[1] [1]	
			sacr cell	ificial protection – does not need or use power / ba odic protection – does	ttery / electricity /	electrical [1]	
				ificial protection uses up / needs a sacrificial / more odic protection doesn't	reactive metal	[1] [1]	
5		_		/ / sun / sunlight / solar energy nitiates / speeds up		[1] [1]	
	(b)	(i)		% – 1(%) carbon dioxide ept: less than 1(%)		[1]	
			20 %	5 – 21(%) oxygen		[1]	
		(ii)	prod	ove carbon dioxide from atmosphere luce oxygen two from:		[1] [1]	
			phot	cosynthesis rophyll / chloroplast			
			light	/ sun / sunlight / UV / photochemical led carbohydrates / glucose / sugar(s)		[2]	
		(ligh	ht) ca	is photochemical / needs light uses formation of silver / silver ions reduced		[1] [1]	
		(on formation of silver) goes black no light still silver(I) bromide / stays white / no reaction				[1] [1]	
6	. ,	(a) any three from: barium more reactive / forms ions more reac		nore reactive / forms ions more readily			
		bar	ium n	eacts with (cold) water, nickel does not nore vigorous with acids			
		nick	nickel compounds coloured, barium compounds white nickel has more than one oxidation state, barium has one				
				nickel compounds catalysts, barium / barium compou rms complex ions, barium does not	ınds not catalysts	[3]	
	(b)	(i)	high	ard reaction favoured by low temperatures / revolutemperatures / heat hermic	erse reaction fav	oured by [1] [1]	
	((ii)	-	lucts / RHS fewer moles / molecules / smaller volume / ORA		[1] [1]	
	(i	iii)	do n	ot react or left behind / left at 60°C		[1]	

	Page 5		Mark Scheme: Teachers' version	Syllabus	Paper
			IGCSE – October/November 2011	0620	33
	cat and		trolysis ode (pure) nickel de impure nickel trolyte is a soluble nickel salt		[1] [1] [1]
7	C ₉ H	126/1	[1] [1]		
	(b) (i)	C—(ydrogen atoms 1bp C bond atoms 1bp : 2 bp		[1] [1] [1]
	(ii)		ect repeat unit inuation		[1] [1]
	(iii)	H-H bond 2C-H –130 or:	ds broken $+436 \text{ (kJ/mol)}$ C=C $+610 = +1046 \text{ (kJ/mol)}$ ds formed $-415 \times 2 \text{ kJ/mol}$ C-C $-346 = -1176 \text{ (kJ/mol)}$ 0 kJ/mol / more energy released than absorbed		[1] [1] [1]
		3882 bond 4012 –130 allo v	ds broken 2 (kJ/mol) ds formed 2 (kJ/mol) 0 kJ/mol / more energy released than absorbed w: ecf for final mark as long as the answer is not pose; units not necessary	sitive	[1] [1] [1]
	(c) (i)	buta	n-1-ol or butan-2-ol or butanol		[1]
	(ii)		-CH ₂ -CH(Br)-CH ₂ Br ₃ Br ₂ = 1 : any other dibromobutane = 0		[2]
	(iii)	HI			[1]