UNIVERSITY OF CAMBRIDGE INTERNATIONAL EXAMINATIONS International General Certificate of Secondary Education | CANDIDATE
NAME | | | | |-------------------|----------------------------|---------------------|-------------------| | CENTRE
NUMBER | | CANDIDATE
NUMBER | | | CHEMISTRY | | | 0620/31 | | Paper 3 (Extend | ded) | Octo | ber/November 2012 | | | | | 1 hour 15 minutes | | Candidates ans | wer on the Question Paper. | | | ## **READ THESE INSTRUCTIONS FIRST** No Additional Materials are required. Write your Centre number, candidate number and name on all the work you hand in. Write in dark blue or black pen. You may use a pencil for any diagrams, graphs or rough working. Do not use staples, paper clips, highlighters, glue or correction fluid. DO NOT WRITE IN ANY BARCODES. Answer all questions. A copy of the Periodic Table is printed on page 12. At the end of the examination, fasten all your work securely together. The number of marks is given in brackets [] at the end of each question or part question. | For Exam | iner's Use | |----------|------------| | 1 | | | 2 | | | 3 | | | 4 | | | 5 | | | 6 | | | 7 | | | Total | | This document consists of 12 printed pages. **1** A list of techniques used to separate mixtures is given below. filtration diffusion fractional distillation simple distillation crystallisation chromatography From this list, choose the most suitable technique to separate the following mixtures. A technique may be used once, more than once or not at all. | (a) | butane from a mixture of propane and butane | [1] | |-----|---|------| | (b) | oxygen from liquid air | [1] | | (c) | water from aqueous magnesium sulfate | [1] | | (d) | potassium chloride from aqueous potassium chloride | [1] | | (e) | silver chloride from a mixture of silver chloride and water | [1] | | (f) | glucose from a mixture of glucose and maltose | [1] | | | [Total | : 6] | © UCLES 2012 0620/31/O/N/12 2 Three of the halogens in Group VII are listed below. chlorine bromine iodine | (a) | (i) | How does their colour change down the Group? | | |-----|-------|---|-------------------| | | (ii) | How do their melting points and boiling points change down the Group? | _ | | (| (iii) | Predict the colour and physical state (solid, liquid or gas) of astatine, At. | | | | | physical state[2 | 2] | | (b) | A ra | adioactive isotope of iodine, $^{131}_{53}$ I, is used to treat cancer. | | | | (i) | Define the term isotope. | | | | (ii) | How many protons, electrons and neutrons are there in one atom of $^{131}_{53}$ I? | ···
<u>'</u>] | | | | number of protons | | | | | number of electrons | <u>?]</u> | | (| (iii) | When this isotope, $^{131}_{53}\mathrm{I}$, emits radiation, a different element with a proton number of 54 is formed. What is the name of this element? | of | | | | [1 |] | | (c) | two | orine, the most reactive halogen, forms compounds with the other halogens. It forms compounds with bromine. duce their formulae from the following information. | S | | | | npound 1 emass of one mole of this compound is 137 g. | | | | | formula is[1 |] | | | 0.02 | npound 2
2 moles of this compound contain 0.02 moles of bromine atoms and 0.1 moles or
rine atoms. | of | | | Its f | formula is[1 |] | | | | [Total: 11 | 1 | - 3 The speed (rate) of a chemical reaction depends on a number of factors which include temperature and the presence of a catalyst. - (a) Reaction speed increases as the temperature increases. (i) Explain why reaction speed increases with temperature | ('') | Explain with reaction opera increased with temperature. | |------|---| | | | | | | | | | | | | | | | | ••••• |
 |
 | |-------|------|------| | | | | (ii) Reactions involving enzymes do not follow the above pattern. The following graph shows how the speed of such a reaction varies with temperature. Suggest an explanation why initially the reaction speed increases then above a certain temperature the speed decreases. |
 | |---------| |
[2] | **(b)** An organic compound decomposes to give off nitrogen. $$\mathrm{C_6H_5N_2C}\mathit{l}(\mathrm{aq}) \ \to \ \mathrm{C_6H_5C}\mathit{l}(\mathrm{I}) \ + \ \mathrm{N_2(g)}$$ The speed of this reaction can be determined by measuring the volume of nitrogen formed at regular intervals. Typical results are shown in the graph below. (i) The reaction is catalysed by copper. Sketch the graph for the catalysed reaction on the diagram above. [2] | (ii) | How does the speed of this reaction vary with time? [1] | |---------|---| | (iii) | Why does the speed of reaction vary with time? | | | [2] | | (c) Cat | alytic converters reduce the pollution from motor vehicles. | | | des of nitrogen bon monoxide less harmful gases to atmosphere | | | catalysts: rhodium, platinum, palladium | | (i) | Describe how carbon monoxide and the oxides of nitrogen are formed in car engines. | | | | | | | | | [4] | | (ii) | Describe the reaction(s) inside the catalytic converter which change these pollutants into less harmful gases. Include at least one equation in your description. | | | | | | | | | [3] | | | [Total: 17] | | 4 | Silicon(IV) oxide, SiO ₂ , and zirconium(IV) oxide, ZrO ₂ , are both macromolecules. | |---|--| | | They have similar physical properties but $silicon(IV)$ oxide is acidic and $zirconium(IV)$ oxide | | | is amphoteric. | | | | | (a) | Def | Define the term <i>macromolecule</i> . | | | | | | |-----|------|---|-----|--|--|--|--| | (b) | | Predict three physical properties of these two oxides. | | | | | | | | | | | | | | | | | (ii) | Name an element which has the same physical properties as these two oxides. | | | | | | | (c) | (i) | Name a reagent that reacts with the oxides of both elements. | | | | | | | | (ii) | Name a reagent that reacts with only one of the oxides. reagent | | | | | | | | | oxide which reacts[Tota | [2] | | | | | | 5 | Carbonyl chloride, | $COCl_2$, | is | widely | used | in | industry | to | make | polymers, | dyes | and | |---|--------------------|------------|----|--------|------|----|----------|----|------|-----------|------|-----| | | pharmaceuticals. | | | | | | | | | | | | (a) Carbonyl chloride was first made in 1812 by exposing a mixture of carbon monoxide and chlorine to bright sunlight. This is a photochemical reaction. $$CO(g) + Cl_2(g) \rightarrow COCl_2(g)$$ | | | $CO(g) + Cl_2(g) \rightarrow COCl_2(g)$ | |-----|-------|--| | | (i) | Explain the phrase photochemical reaction. | | | | | | | | [2] | | | (ii) | Give another example of a photochemical reaction and explain why it is important either to the environment or in industry. | | | | | | | | | | | | [3] | | (b) | Car | bonyl chloride is now made by the reversible reaction given below. | | | | $CO(g) + Cl_2(g) \rightleftharpoons COCl_2(g)$ | | | | e forward reaction is exothermic.
e reaction is catalysed by carbon within a temperature range of 50 to 150 °C. | | | (i) | Predict the effect on the yield of carbonyl chloride of increasing the pressure. Explain your answer. | | | | | | | | [2] | | | (ii) | If the temperature is allowed to increase to above 200 $^{\circ}\text{C},$ very little carbonyl chloride is formed. Explain why. | | | | | | | | [2] | | | (iii) | Explain why a catalyst is used. | | | | [1] | (c) The structural formula of carbonyl chloride is given below. For Examiner's Use Draw a diagram showing the arrangement of the outer (valency) electrons in one molecule of this covalent compound. Use o to represent an electron from a carbon atom. Use x to represent an electron from a chlorine atom. Use ● to represent an electron from an oxygen atom. [3] [Total: 13] 6 A sandwich contains three of the main constituents of food. (a) (i) These constituents of food can be hydrolysed by boiling with acid or alkali. Complete the table. | constituent of food | product of hydrolysis | |----------------------|-----------------------| | protein | | | fat | | | complex carbohydrate | | | | I < | |-----|-----| | - 1 | | | - 1 | | (ii) What type of synthetic polymer contains the same linkage as | fats, | | | |-------|--|--| |-------|--|--| proteins? **(b)** An incomplete structural formula of a protein is given below. Complete this diagram by inserting the linkages. [2] **(c)** Butter contains mainly saturated fats. Fats based on vegetable oils, such as olive oil, contain mainly unsaturated fats. A small amount of fat was dissolved in an organic solvent. Describe how you could determine if the fat was saturated or unsaturated. |
 |
 | |------|------| |
 |
 |[3] [Total: 10] **7** Both strontium and sulfur have chlorides of the type XCl_2 . The table below compares some of their properties. | | strontium chloride | sulfur chloride | | | |------------------------|--------------------------------------|----------------------------------|--|--| | appearance | white crystals | red liquid | | | | formula | $\mathrm{SrC}l_2$ | SCl ₂ | | | | melting point/°C | 874 | -120 | | | | boiling point/°C | 1250 | 59 | | | | conductivity of liquid | good | poor | | | | solubility in water | dissolves to form a neutral solution | reacts to form a solution of pH1 | | | |) (1) | 25 °C. | |-------|--| | | [2] | | (ii) | Strontium is a metal and sulfur is a non-metal. Explain why both have chlorides of the type XCl_2 . | | | The electron distribution of a strontium atom is 2 + 8 + 18 + 8 + 2. | | | | | | [2] | | (iii) | Deduce the name of the acidic compound formed when sulfur chloride reacts with water. | | | [1] | | (iv) | Explain the difference in the electrical conductivity of liquid strontium chloride and liquid sulfur chloride. | | | | | | | | | [3] | © UCLES 2012 0620/31/O/N/12 | (b) | Strontium | chloride-6-water | can | be | made | from | the | insoluble | compound, | strontium | |-----|------------|--------------------|-------|-----|------|------|-----|-----------|-----------|-----------| | | carbonate, | by the following i | eacti | ons | | | | | | | $$SrCO_3(s) \ + \ 2HC\mathit{l}(aq) \ \rightarrow \ SrC\mathit{l}_2(aq) \ + \ CO_2(g) \ + \ H_2O(I)$$ $$SrCl_2(aq) + 6H_2O(I) \rightarrow SrCl_2.6H_2O(s)$$ The following method was used to prepare the crystals. - 1 Add excess strontium carbonate to hot hydrochloric acid. - 2 Filter the resulting mixture. - 3 Partially evaporate the filtrate and allow to cool. - 4 Filter off the crystals of SrCl₂.6H₂O. - 5 Dry the crystals between filter papers. | | (i) | How would you know when excess strontium carbonate had been added in step | 1? | |-----|-------|---|-----| | | | | | | | | | [1] | | | (ii) | Why is it necessary to filter the mixture in step 2? | | | | | | [1] | | (| (iii) | In step 3, why partially evaporate the filtrate rather than evaporate to dryness? | | | | | | [1] | | (c) | use | he above experiment, $50.0\mathrm{cm^3}$ of hydrochloric acid of concentration $2.0\mathrm{mol/dm^3}$ w d. $6.4\mathrm{g}$ of $\mathrm{SrC}l_2.6\mathrm{H_2O}$ was made. culate the percentage yield. | as | | | nun | nber of moles of HCl used = | | | | nun | ober of moles of $SrCl_2.6H_2O$ which could be formed = | | | | mas | ss of one mole of $SrCl_2.6H_2O$ is 267 g | | | | thed | pretical yield of SrCl ₂ .6H ₂ O =g | | | | per | centage yield =% | [4] | [Total: 15] DATA SHEET The Periodic Table of the Elements | | 0 | Helium | 20
Ne
Neon | 40
Ar
Argon | 8 Ā | Krypton
36 | 131
Xe | Xenon
54 | Rn | Radon
86 | | Lutetium 7.1 | Lr
Lawrendur
103 | |-------|-----|---------------|-------------------------|------------------------------------|----------------------------|-----------------|------------------|--------------------|-------------------|-------------------|------------------------------|--------------------------------------|---| | | II/ | | 19 Fluorine | 35.5 C1 Chlorine | ® ऴ | | | lodine
53 | At | Astatine
85 | | 173
Yb
Ytterbium
70 | Nobelium | | | | | 16
O
Oxygen
8 | 32
S
Sulfur
16 | Se Se | Selenium
34 | 128
Te | Tellurium
52 | Ро | Polonium
84 | | 169
Tm
Thulium | Md
Mendelevium
101 | | | > | | 14 N itrogen 7 | 31
P
Phosphorus
15 | 75
As | Arsenic
33 | 122
Sb | Antimony
51 | 209
Bi | Bismuth
83 | | 167
Er
Erbium
68 | Fm
Fermium
100 | | | > | | 12
Carbon | 28 Si iicon 14 | | Ε | Sn Sn | Tin
50 | 207
Pb | | | 165
Ho
Holmium
67 | Esinsteinium 99 | | | = | | 11
Boron
5 | 27
A1
Aluminium
13 | ⁷⁰
Ga | Gallium
31 | 115
In | Indium
49 | 204
T î | Thallium
81 | | 162
Dy
Dysprosium
66 | Californium | | | | | | | 65
Zn | Zinc
30 | 112
Cd | Cadmium
48 | 201
Hg | Mercury
80 | | 159 Tb Terbium 65 | BK Berkelium | | | | | | | 64
Cu | Copper
29 | 108
Ag | Silver
47 | 197
Au | Gold
79 | | 157 Gd Gadolinium 64 | Cm
Curium
96 | | Group | | | | | 65 Z | Nickel
28 | 106
Pd | Palladium
46 | 195
Pt | Platinum
78 | | 152
Eu
Europium
63 | Am Americium 95 | | Gre | | | | | င်း | Cobalt
27 | 103
Rh | Rhodium
45 | 192
I r | Iridium
77 | | Sm
Samarium
62 | Pu Plutonium 94 | | | | 1
Hydrogen | | | .56
Fe | Iron
26 | 101
Ru | Ruthenium
44 | 0 S | Osmium
76 | | Pm
Promethium
61 | Neptunium | | | | | | | SS
Mn | Manganese
25 | ဥ | n Technetium
43 | 186
Re | | | Neodymium
60 | 238
U
Uranium
92 | | | | | | | ن و25 | Chromium
24 | 96
W | Molybdenum
42 | 184
W | Tungsten
74 | | Pr
Praseodymium
59 | Pa
Protactinium
91 | | | | | | | 51 | Vanadium
23 | es
Np | Niobium
41 | 181
Ta | Tantalum
73 | | 140 Ce Cerium | 232
Th
Thorium | | | | | | | 48 E | Titanium
22 | 91
Z | Zirconium
40 | 178
Hf | Hafnium
72 | | | nic mass
bol
nic) number | | | | | | | Sc
Sc | Scandium
21 | ® > | Yttrium
39 | 139
La | Lanthanum
57 * | 227
Ac
Actinium | series
eries | a = relative atomic massX = atomic symbolb = proton (atomic) number | | | = | | Berylium | Magnesium | 0 9 | Calcium
20 | ∞ స | Strontium
38 | 137
Ba | Barium
56 | 226 Ra Radium 88 | *58-71 Lanthanoid series | e × a | | | _ | | 7 L.i Lithium | 23
Na
Sodium | ® × | Potassium
19 | 85
5 | Rubidium
37 | 133
Cs | Caesium
55 | Fr Francium 87 | *58-71 L: | Key | The volume of one mole of any gas is 24 dm³ at room temperature and pressure (r.t.p.). Permission to reproduce items where third-party owned material protected by copyright is included has been sought and cleared where possible. Every reasonable effort has been made by the publisher (UCLES) to trace copyright holders, but if any items requiring clearance have unwittingly been included the publisher will be pleased to make amends at the earliest possible opportunity. University of Cambridge International Examinations is part of the Cambridge Assessment Group. Cambridge Assessment is the brand name of University of Cambridge Local Examinations Syndicate (UCLES), which is itself a department of the University of Cambridge.