MARK SCHEME for the October/November 2014 series

0620 CHEMISTRY

0620/32

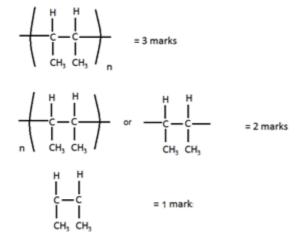
Paper 3 (Extended Theory), maximum raw mark 80

This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began, which would have considered the acceptability of alternative answers.

Mark schemes should be read in conjunction with the question paper and the Principal Examiner Report for Teachers.

Cambridge will not enter into discussions about these mark schemes.

Cambridge is publishing the mark schemes for the October/November 2014 series for most Cambridge IGCSE[®], Cambridge International A and AS Level components and some Cambridge O Level components.


® IGCSE is the registered trademark of Cambridge International Examinations.

Pa	age 2	2	Mark Scheme	Syllabus	Paper
			Cambridge IGCSE – October/November 2014	0620	32
1	(a)	foo	dstuffs or drugs		[1]
	(b)	(i)	simple distillation fractional distillation or diffusion fractional distillation filtration or evaporation chromatography		[5]
		(ii)	 M1 dissolving M2 filtration M3 evaporation or heat (to crystallisation point) M4 crystallisation or allow leave to cool or M3 crystallisation M4 filtration 		[4]
			OR: Adding to H_2SO_4 method		
			 M1 Add excess mixture to acid (or until no more dissolves) M2 Filtration or M1 Add excess acid to mixture M2 With heat M3 evaporation or heat (to crystallisation point) Stop marking if he M4 crystallisation or allow leave to cool 	ated to dryn	ess.
			or M3 crystallisation		
			M4 filtration		[Total: 10]
2	(a)		$f + 3e^- \rightarrow Al$ ecies (1) balancing (1)		[2]
	(b)	(i)	$A_lC_{l_3} + 3Na \rightarrow 3NaC_l + A_l$ species (1) balancing (1)		[2]
		(ii)	M1 electrolysis		[1]
			M2 molten sodium chloride		[1]
			or M1 Add named more reactive metal (e.g. K) M2 Molten sodium chloride		
	(c)	(i)	bauxite		[1]
		(ii)	M1 aluminium oxide / amphoteric oxide dissolves OR iron(III) oxid not	e / basic oxi	de does [1]
			M2 Filter COND on M1		[1]

ge 3			Syllabus	Pape	
		Cambridge IGCSE – October/November 2014	0620	32	
	(iii)	Any two from: Lowers (working) temperature or lowers mpt (of mixture) increases conductivity reduces cost OR energy need			[2]
	(iv)	M1 = Any one correct equation.			
		M2 Oxygen mark Oxygen comes from oxide ions or $2O^{2-} \rightarrow O_2 + 4e$			
		M3 Carbon dioxide mark Anode reacts with oxygen / burns to form CO_2 or $C + O_2 \rightarrow CO_2$			
			on monoxide	Э	
		or CO_2 reacts with the anode to form carbon monoxide or $CO_2 + C \rightarrow 2CO$			
		M5 Fluorine mark Fluorine comes from cryolite or fluoride ions or $2F^- \rightarrow F_2 + 2e^-$			[5]
(d)	(i)	Has an impervious or non-porous or passive or unreactive or prote	ective oxide	layer	[1]
	(ii)	Any two from: good conductor of heat high melting point Unreactive towards foods			[2]
(a)	(i)	C_4H_8 only CH ₂ (Allow C ₁ H ₂)			[2]
	(ii)	Any unambiguous structural formula of methyl cyclopropane or but- methyl propene	1-ene or bu	it-2-ene	e or [1]
	(iii)	M1 same molecular formula			[1]
		M2 different structural formulae or different structures or different arrangement of atoms			[1]
	(iv)	one an alkane, the other an alkene or			
		one is saturated / has single bonds, the other is unsaturated / has a ignore: references to the 'functional group'	ı double bor	nd	
		If 'yes' both alkanes or both saturated ignore: references to the 'functional group'			[1]
		d) (i) (ii) a) (i) (ii) (iii)	increases conductivity reduces cost OR energy need (iv) M1 = Any one correct equation. M2 Oxygen mark Oxygen comes from oxide ions or $2O^2 \rightarrow O_2 + 4e$ M3 Carbon dioxide mark Anode reacts with oxygen / burns to form CO_2 or $C + O_2 \rightarrow O_2$ M4 Carbon monoxide mark Anode reacts with limited oxygen / incompletely burns to form carbo or $2C + O_2 \rightarrow 2CO$ or CO_2 reacts with the anode to form carbon monoxide or $CO_2 + C \rightarrow 2CO$ M5 Fluorine mark Fluorine comes from cryolite or fluoride ions or $2F^- \rightarrow F_2 + 2e^-$ d) (i) Has an impervious or non-porous or passive or unreactive or prote (ii) Any two from: good conductor of heat high melting point Unreactive towards foods a) (i) C ₄ H ₆ only CH ₂ (Allow C ₁ H ₂) (ii) Any unambiguous structural formula of methyl cyclopropane or but- methyl propene (iii) M1 same molecular formula M2 different structural formulae or different structures or different arrangement of atoms (iv) If 'No': one an alkane, the other an alkene or one is saturated / has single bonds, the other is unsaturated / has a ignore: references to the 'functional group' If 'yes' both alkanes or both saturated	increases conductivity reduces cost OR energy need (iv) M1 = Any one correct equation. M2 Oxygen mark Oxygen comes from oxide ions or $2O^{2^{-}} \rightarrow O_2 + 4e$ M3 Carbon dioxide mark Anode reacts with oxygen / burns to form CO ₂ or C + O ₂ \rightarrow CO ₂ M4 Carbon monoxide mark Anode reacts with limited oxygen / incompletely burns to form carbon monoxide or 2C + O ₂ \rightarrow 2CO or CO ₂ reacts with the anode to form carbon monoxide or CO ₂ + C \rightarrow 2CO M5 Fluorine mark Fluorine comes from cryolite or fluoride ions or $2F^{-} \rightarrow F_2 + 2e^{-}$ d) (i) Has an impervious or non-porous or passive or unreactive or protective oxide (ii) Any two from: good conductor of heat high melting point Unreactive towards foods a) (i) C ₄ H ₆ only CH ₂ (Allow C ₁ H ₂) (ii) Any unambiguous structural formula of methyl cyclopropane or but-1-ene or bure methyl propene (iii) M1 same molecular formula M2 different structural formulae or different structures or different arrangement of atoms (iv) If 'No': one an alkane, the other an alkene or or one is saturated / has single bonds, the other is unsaturated / has a double bor ignore: references to the 'functional group' If 'yes' both alkanes or both saturated	increases conductivity reduces cost OR energy need (iv) M1 = Any one correct equation. M2 Oxygen mark Oxygen comes from oxide ions or $20^{2-} \rightarrow 0_{2} + 4e$ M3 Carbon dioxide mark Anode reacts with oxygen / burns to form CO ₂ or C + O ₂ \rightarrow CO ₂ M4 Carbon monoxide mark Anode reacts with limited oxygen / incompletely burns to form carbon monoxide or CO ₂ + $0^{2} \rightarrow 2CO$ or C + $0^{2} \rightarrow 2CO$ M5 Fluorine mark Fluorine comes from cryolite or fluoride ions or $2F^{-} \rightarrow F_{2} + 2e^{-}$ d) (i) Has an impervious or non-porous or passive or unreactive or protective oxide layer (ii) Any two from: good conductor of heat high melting point Unreactive towards foods a) (i) C ₄ H ₀ only CH ₂ (Allow C ₁ H ₂) (ii) Any unambiguous structural formula of methyl cyclopropane or but-1-ene or but-2-ener methyl propene (iii) M1 same molecular formula M2 different structural formulae or different structures or different arrangement of atoms (iv) If 'No': one an alkane, the other an alkene or or or a transfer the other an alkene to four is unsaturated / has a double bond ignore: references to the 'functional group' If 'yes' both alkanes or both saturated

Page 4	ŀ	Mark Scheme	Syllabus	Paper
		Cambridge IGCSE – October/November 2014	0620	32
(b)	(i)	M1 Action of heat or catalyst or thermal decomposition (on an alka Ignore steam. Ignore pressure.	ane)	[1]
		M2 Long-chained molecules or alkanes form smaller molecules (n forms smaller alkenes (or alkanes)	ot smaller fr	action) or [1]
	(ii)	C ₁₀ H ₂₂		[1]
	. ,			
(c)	(i)	M1 Correct structure of one repeat unit		[1]
		M2 Continuation bonds COND on M1		[1]
		M3 use of brackets and subscript 'n' COND on M1 and M2		[1]

4

	(ii)	dibromoethane or 1,2-dibromoethane	[1]
(a)	M1	brass	[1]
	M2	copper COND on M1	[1]
(b)	(i)	$2ZnS + 3O_2 \rightarrow 2ZnO + 2SO_2$ species (1) balancing (1)	[2]
	(ii)	Manufacture of sulfuric acid or bleach or making wood pulp or making paper or food or fruit juice or wine preservative or fumigant or sterilising	[1]
			[,]
(c)	(i)	sulfuric acid	[1]

Page 5		5	Mark Scheme	Syllabus	Paper
			Cambridge IGCSE – October/November 2014	0620	32
4	(c)	(ii)	$Zn^{2+} + 2e \rightarrow Zn$		[1]
			oxygen or water Allow O_2 and H_2O if no name seen		[1]
			sulfuric acid Allow: H_2SO_4 if no name seen		[1]
4	(d)	(i)	from zinc to carbon (clockwise direction on or near the wire)		[1]
		(ii)	to allow <u>ions</u> to flow		[1]
		(iii)	oxidation and loss of electron(s) or increase in oxidation number/state		[1]
			reduction and decrease in oxidation number/state or gain of electron(s)		[1]
					[Total: 13]
5	(a)	(i)	M1 Contain carbon, hydrogen and oxygen (only)		[1]
			M2 hydrogen and oxygen is in a 2:1 ratio (or in the same ratio as w	vater)	[1]
		(ii)	M1 -O- linkage		[1]
			M2 3 monomer units with 3 blocks and 3 Oxygen atoms Cond		[1]
			-0		
5	(b)	cata	alyst		[1]

biological or protein

5 (c) (i) C A B

ABC = 1 ACB = 1 BCA = 1 CBA = 1 BAC = 0 Allow 70 for C, 40 for B and 20 for A

(ii) M1 Energy mark: at higher temperature particles/molecules more have more energy or move faster [1]

M2 Collision frequency mark: collide more frequently/often **or** more collisions per unit time **or** higher rate of collisions. [1] Ignore: 'more collisions'

[1]

[2]

M3 Collision energy mark: more molecules have enough energy to react or more collisions are above activation energy or successful [1]

Pa	age 6	5	Mark Scheme	Syllabus	Paper
			Cambridge IGCSE – October/November 2014	0620	32
		(iii)	C rate zero or enzymes denatured		[1]
					[Total: 12]
6	(a)	ma	king fertilisers or pickling metals or making fibres or making phosphoking dyes or making paints/pigments/dyes or making paper making ergents or tanning leather or battery acid.		
	(b)	(i)	add water (to yellow solid or to (anhydrous) iron(II) sulfate or to Fellow	SO₄ or to pr	oducts [1]
			goes green		[1]
		(ii)	M1 Sulfur trioxide reacts with water to make sulfuric acid or equati	on	[1]
			M2 sulfur dioxide reacts with oxygen to form sulfur trioxide or equa	ation	[1]
		(iii)	M1 = 2.07 Allow 2.1 or 2.06667		
			M2 = 62.8.g		
			M3 =(M2/152 =) 0.41(3)		
			M4 (=M1/M3) rounded to the nearest whole number \times = 5		[4]
6	(c)	(i)	nitric acid or nitric(V) acid or HNO ₃		[1]
		(ii)	$2KNO_3 = 2KNO_2 + O_2$ Species (1) Balance (1)		[2]
			· /		[Total: 12]