MARK SCHEME for the May/June 2008 question paper

5054 PHYSICS

5054/03

Paper 3 (Practical Test), maximum raw mark 30

This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began.

All Examiners are instructed that alternative correct answers and unexpected approaches in candidates' scripts must be given marks that fairly reflect the relevant knowledge and skills demonstrated.

Mark schemes must be read in conjunction with the question papers and the report on the examination.

• CIE will not enter into discussions or correspondence in connection with these mark schemes.

CIE is publishing the mark schemes for the May/June 2008 question papers for most IGCSE, GCE Advanced Level and Advanced Subsidiary Level syllabuses and some Ordinary Level syllabuses.

UNIVERSITY of CAMBRIDGE International Examinations

Page 2	Mark Scheme	Syllabus	Paper
	GCE O LEVEL – May/June 2008	5054	03

Marking scheme code

- B1 Independent mark.
- M1 Method mark, if not given subsequent A mark falls (up to the next B, M or C mark).
- A1 Answer mark, not awarded if an M mark immediately before it is not awarded.
- C1 Compensation mark, given automatically if the answer is correct, i.e. working need not be seen if the answer is correct. Also given if the answer is wrong but the point is seen in the working.

	Pa	ge 3	Mark Scheme	Syllabus	Paper	
			GCE O LEVEL – May/June 2008	5054	03	
1	(a)	(i) & (ii)	Sensible <i>t</i> & <i>d</i> determined to the nearest mm or b once. Use of 5 coins for one of <i>t</i> or <i>d</i> , either in a stack for <i>t</i>		en B1 B1	
		(iii)	Use of 5 coins in a stack for <i>t</i> and in a line for <i>d</i> .		B1	
	(b)	Correct o	calculation of density to 2/3 s.f. with unit and in the rang	ge 5.0 to 10.0 g/cr	m ³ . B1	
	(c)	Unevent	thickness of the coin because of rim, images on the co	in, etc.	B1	[5]
2	(a)	Sensible	mperatures recorded with unit seen somewhere includivalues for θ_2 and θ_3 . ature fall > temperature rise.	ing sensible $ heta_1$.	B1 B1 B1	
	(b)	Correct o	calculation of both thermal energy changes.		M1	
	(c)	by the	mal energy lost by the hot water is greater than the the cold water because thermal energy is lost to e consistent with calculation with correct unit se on.	the surrounding	gs.	[5]
3	(a)		ed to the nearest mm or better with unit seen here or and 25.0cm.	in (c) and betwe	en B1	
	(b)	Image in	verted with sensible method described.		B1	
	(c)		ed to the nearest mm or better with unit seen here or and 83.0cm.	in (a) and betwe	en B1	
	(d)		calculation of <i>f</i> yielding a value between 13.0cm and 17 calculation of <i>f</i> yielding a value between 11.0cm and 19		B1 B1	[5]
	(Allo	ow chang	e of <i>D</i> for the last 2 marks)			
4	(a)		egion of 4.0mA to 11.0mA recorded to 0.1mA or better region of 1.5V to 3.0V recorded to 0.01V or better with		B1 B1	
	(b)	Value 15	culated using (candidate's V)/(candidate's I) with correct 0Ω to 500 Ω and recorded to 2/3 s.f. c.f. for power of 10 or unit error above)	et unit.	B1 B1	[4]

	ge 4	Mark Scheme Syllabus P		Paper	
		GCE O LEVEL – May/June 2008	5054	03	
Tak (c)	Table with Use of the (I decreased) R = 1070000000000000000000000000000000000	th units for all values. Allow e.c.f. of incorrect units in (aree R values with correct trend in I . ases as R increases). O Ω with the smallest current. rther R values showing correct trend in I . not found take 2 marks off in this section)	(a) or (b) .	B1 B1 B1 B1	I
Gra (d)	Axes lab Suitable easy to f (Allow so Two poin furthest f	elled with unit and correct orientation. scale, data occupies more than half page in both d follow; no 3s, 6s, 7s etc. cales to start at origin) nts plotted correctly from an easy to follow scale – from the line.		B1 B1 B1 B1	1
	culations Commer	s that R_{LED} deceases as <i>I</i> increases.		B1	