

Cambridge International Examinations

Cambridge International General Certificate of Secondary Education

MATHEMATICS 0580/41
Paper 4 (Extended) May/June 2016

MARK SCHEME
Maximum Mark: 130

Published

This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began, which would have considered the acceptability of alternative answers.

Mark schemes should be read in conjunction with the question paper and the Principal Examiner Report for Teachers.

Cambridge will not enter into discussions about these mark schemes.

Cambridge is publishing the mark schemes for the May/June 2016 series for most Cambridge IGCSE[®], Cambridge International A and AS Level components and some Cambridge O Level components.

® IGCSE is the registered trademark of Cambridge International Examinations.

This syllabus is approved for use in England, Wales and Northern Ireland as a Cambridge International Level 1/Level 2 Certificate.

Page 2	Mark Scheme		Paper
	Cambridge IGCSE – May/June 2016	0580	41

Abbreviations

cao correct answer only

dep dependent

FT follow through after error isw ignore subsequent working

oe or equivalent SC Special Case

nfww not from wrong working

soi seen or implied

Question	Answer	Mark	Part marks
1 (a) (i)	48	2	M1 for $\frac{72}{3}$
(ii)	32.4[0]	1	
(iii)	$\frac{13}{30}$	2	M1 for $\frac{72 - their(ii) - 8.4}{72}$ oe
(iv)	24	3	M2 for $\frac{19.2}{0.8}$ oe
			or M1 for recognising 19.2 is 80%
(b)	660	3	M2 for $\frac{550 \times 2 \times 10}{100} + 550$ oe
			or M1 for $\frac{550 \times 2 \times 10}{100}$ oe
(c)	663.9[0]	2	M1 for 550×1.019^{10} oe
(d)	1.5[0]	3	M2 for $\sqrt[10]{\frac{638.3[0]}{550}}$ oe
			or M1 for $550 \times m^{10} = 638.3[0]$
2 (a) (i)	Triangle drawn, vertices $(2, -4)$, $(2, -5)$, $(4, -4)$	2	SC1 for translation $\binom{5}{k}$ or $\binom{k}{-2}$ or correct points not joined
(ii)	Triangle drawn, vertices (-3, 4), (-3, 5), (-1, 4)	2	SC1 for reflection in line $y = k$ or line $x = 1$ or correct points not joined
(iii)	Enlargement	1	
	[factor] 3	1	
	[centre] $(-6, -5)$	1	
(b) (i)	$\begin{pmatrix} 2 & 5 \\ 3 & 10 \end{pmatrix}$	1	

Page 3	Mark Scheme		Paper
	Cambridge IGCSE – May/June 2016	0580	41

Question	Answer	Mark	Part marks
(ii)	$\begin{pmatrix} 10 & 14 \\ 18 & 24 \end{pmatrix} $ final answer	2	SC1 for one row or one column correct
(iii)	$\frac{1}{4}$ oe	3	M2 for $1 \times 4 - 2 \times 3 = 4 \times k - 3 \times 1$ or better or B1 for $1 \times 4 - 2 \times 3$ or $4 \times k - 3 \times 1$ seen
(c) (i)	Rotation	1	
	90° [anti-clockwise] oe	1	
	(0, 0) oe	1	
(ii)	$\begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}$	2	SC1 for one correct row or column
3 (a) (i)	400	1	
(ii)	350	1	
(iii)	70	1	
(iv)	170	2	B1 for 30 seen
(b) (i)	Mid-values 40, 80, 125, 200 soi	M1	
	Σfx with correct frequencies and x's in correct intervals or on boundaries of correct intervals	M1	
	÷ 200	M1(dep)	Dependent on second M1
	106 nfww	A1	SC2 for correct answer without working
(ii)	Correct histogram	4	B1 for correct widths
			and B1 for each rectangle of correct height at 0.8, 1.6, 1.6 (up to B3)
			After 0 scored, SC1 for 3 correct frequency densities seen
(iii)	$\frac{10712}{39800}$ oe isw	2	M1 for $\frac{104}{200} \times \frac{103}{199}$ oe
4 (a)	14 137 to 14 137.2 or 14 139	2	M1 for $\frac{4}{3} \times \pi \times 15^3$
(b) (i)	104 000 or 103 600 to 103 700	3	M2 for $\pi \times 25^2 \times 60 - 14140$ or M1 for $\pi \times 25^2 \times 60$

Page 4	Mark Scheme		Paper
	Cambridge IGCSE – May/June 2016	0580	41

Question	Answer	Mark	Part marks
(ii)	52.8 or 52.75 to 52.81	2	M1 for <i>their</i> (b)(i) \div ($\pi \times 25^2$)
			or $14140 \div (\pi \times 25^2)$
(c) (i)	15.8 or 15.81	3	M2 for $[r^2 =] \frac{14140}{\frac{1}{3} \times \pi \times 54}$
			or M1 for $\frac{1}{3} \times \pi \times r^2 \times 54 = 14140$ oe
(ii)	3580 or 3576 to 3581 nfww	4	M1 for $(their (c)(i))^2 + 54^2$
			M1 for $\pi \times (their (c)(i)) \times \sqrt{\{(their (c)(i))^2 + 54^2\}}$
			M1 for $\pi \times (their (c)(i))^2$
5 (a)	9 10.5	1 1	
(b)	Fully correct curve	5	SC4 for correct curve, but branches joined
			B3 FT for 9 or 10 points plotted or B2 FT for 7 or 8 points plotted or B1 FT for 5 or 6 points plotted
			and B1 for two separate branches not touching or cutting <i>y</i> -axis
(c)	2.1 to 2.6	1	
	8.5 to 9	1	
(d)	2, 3, 5, 7	2	SC1 for correct 4 values and no more than one extra positive integer or ± 2 , ± 3 , ± 5 , ± 7 or 3 correct values and no extras
(e)	(-2, -12)	1	
(f) (i)	$20 + x^2 = x^3$	M1	Multiplication by <i>x</i>
	$x^3 - x^2 - 20 = 0$	A1	No errors or omissions
(ii)	Fully correct curve $y = x^2$	2	SC1 for U – shaped parabola, vertex at origin
(iii)	2.5 to 3.5	1	
(iv)	3.[0] to 3.1 or FT their answer to (iii)	1FT	FT dep on (iii) > 0

Page 5	Mark Scheme		Paper
	Cambridge IGCSE – May/June 2016	0580	41

Question	Answer	Mark	Part marks
6 (a) (i)	$[y =] \frac{1}{2}(80 - 2x)$	M1	40 - x is enough
	$A = their \frac{1}{2}(80 - 2x) \times x \text{ oe}$	M1	
	$A = 40x - x^2 \text{ and } x^2 - 40x + A = 0$		
	$A = 40x - x^{-}$ and $x^{-} - 40x + A = 0$	A1	No errors or omissions
(ii)	(x-30)(x-10)	B2	B1 for $x(x-30)-10(x-30) = 0$ or $x(x-10)-30(x-10) = 0$ or SC1 for $(x+a)(x+b)$ where $ab = 300$ or $a+b=-40$
	30, 10	B1	
(iii)	$\sqrt{(-40)^2 - 4(1)(200)}$ or better	B1	or for $(x - 20)^2$
	p = -40 and $r = 2(1)$	B1	Must see $\frac{p+\sqrt{q}}{r}$ or $\frac{p-\sqrt{q}}{r}$ or both
			or for $20 \pm \sqrt{200}$
	5.86 34.14	B1 B1	If B0, SC1 for 5.9 or 5.857 to 5.858 and 34.1 or 34.14
			or 5.86 and 34.14 seen in working
			or -5.86 and -34.14 as final answers
(b) (i)	$\frac{200}{x} - \frac{200}{x+10}$	M2	or M1 for $\frac{200}{x}$ or $\frac{200}{x+10}$ soi
	$\frac{200(x+10)-200x}{x(x+10)} = \frac{2000}{x(x+10)}$	A1	No errors or omissions
(ii)	16 [min] 40 [s]	3	B2 for 0.27 or 0.278 or 0.2777 to 0.2778 or $\frac{5}{18}$ [h] oe
			or $16.\dot{6}$ or 16.7 or 16.66 to 16.67 or $\frac{50}{3}$
			[min]
			or M1 for
			$2000 \div 80(80+10) \text{ or } \frac{200}{80} - \frac{200}{90}$

Page 6	Mark Scheme		Paper
	Cambridge IGCSE – May/June 2016	0580	41

	Question	Answer	Mark	Part marks
7	(a) (i)	$\frac{1}{2}$ p	1	
	(ii)	$\frac{1}{2}\mathbf{p} - \frac{1}{3}\mathbf{r}$	1	
	(iii)	$\mathbf{p} + \frac{2}{3}\mathbf{r}$	1	
	(b)	$\mathbf{r} + \frac{3}{2}\mathbf{p}$	2	M1 for correct unsimplified answer or for correct route or for recognising \overrightarrow{OU} as position vector
	(c)	6 nfww	3	B2 for $(2k)^2 + ([-]k)^2 = 180$ oe
				or M1 for $(2k)^2 + ([-]k)^2$ oe
8	(a)	2	2	M1 for $2x + 1 = 1 + 4$
	(b)	17	2	B1 for $[h(3) =] 8$ soi or $2 \times 2^x + 1$ oe
	(c)	$\frac{x-1}{2}$ oe final answer	2	M1 for $y-1=2x$ or $\frac{y}{2} = x + \frac{1}{2}$ or $x = 2y + 1$
	(d)	$4x^2 + 4x + 5$ final answer	3	M1 for $(2x+1)^2 + 4$ and B1 for $[(2x+1)^2 =] 4x^2 + 2x + 2x + 1$ or better
	(e)	$\sqrt{2}$ or 1.41 or 1.414	1	
	(f)	-1	1	
9	(a) (i)	$-\frac{1}{2}x + 2$ oe	3	SC2 for $y = -\frac{1}{2}x + c$ oe or SC1 for $y = kx + 2$ oe, $k \ne 0$ or M1 for [gradient =] $\frac{-2}{4}$ and M1 for substituting (4, 0) or (0, 2) into $y = (their \ m)x + c$
	(ii)	$\frac{16}{a^2} \left[+ \frac{0^{[2]}}{b^2} \right] = 1 \text{ or } \frac{4^2}{a^2} \left[+ \frac{0^{[2]}}{b^2} \right] = 1$ and $a^{[2]} = 4^{[2]}$ $\left[\frac{0^{[2]}}{a^2} \right] + \frac{4}{b^2} = 1 \text{ or } \left[\frac{0^{[2]}}{a^2} \right] + \frac{2^2}{b^2} = 1$ and $b^{[2]} = 2^{[2]}$	1	

Page 7	Mark Scheme		Paper
	Cambridge IGCSE – May/June 2016	0580	41

Question	Answer	Mark	Part marks
(b) (i)	1.73 or 1.732 or $\sqrt{3}$	3	M2 for $\frac{k^2}{4} = \frac{3}{4}$ or better
			or M1 for $\frac{2^2}{16} + \frac{k^2}{4} = 1$ oe
(ii)	81.8 or 81.78 to 81.79	3	M2 for $2 \times \tan^{-1} \left(\frac{their\sqrt{3}}{2} \right)$ oe
			or M1 for $\tan = \frac{their\sqrt{3}}{2}$ oe
(c) (i)	8π final answer	1	
(ii)	72π final answer	2FT	FT their (c)(i) × 9 in terms of π M1 for area factor of 3^2 or 9 or [new a] = 12, [new b] = 6