

Cambridge International Examinations

Cambridge International General Certificate of Secondary Education

MATHEMATICS

Paper 2 (Extended)

MARK SCHEME

Maximum Mark: 70

Published

This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began, which would have considered the acceptability of alternative answers.

Mark schemes should be read in conjunction with the question paper and the Principal Examiner Report for Teachers.

Cambridge will not enter into discussions about these mark schemes.

Cambridge is publishing the mark schemes for the May/June 2017 series for most Cambridge IGCSE[®], Cambridge International A and AS Level and Cambridge Pre-U components, and some Cambridge O Level components.

 ${\rm \rlap{R}\hskip-1pt B}$ IGCSE is a registered trademark.

Cambridge IGCSE – Mark Scheme **PUBLISHED**

Abbreviations

cao correct answer only

dep dependent

FT follow through after error isw ignore subsequent working

oe or equivalent SC Special Case

nfww not from wrong working

soi seen or implied

Question	Answer	Marks	Part Marks
1	[0].072	1	
2	[0].15 oe	1	
3	[0].62	1	
4	[0].394 or [0].3944 to [0].3945	1	
5	41.9 or 41.87	1	
6	7(2x-3y) final answer	1	
7	41	2	M1 for 5(7) – 3(–2)
8	110	1	
	70	1	
9	$\frac{5}{6} - \frac{3}{6}$ oe	M1	oe for $\frac{5k}{6k} - \frac{3k}{6k}$
	$\frac{1}{3}$ cao final answer	A1	
10	$\frac{1}{6}$ oe	2	M1 for $2 - 1 = 5x + x$ oe
11(a)	6.05×10^{-2}	1	
11(b)	5.1×10^{3}	1	
12	34.8 or 34.84 to 34.85	2	M1 for sin [=] $\frac{4}{7}$
13	n < 3.5 oe final answer	2	M1 for $18 - 11 > 5n - 3n$ oe
14(a)	25	1	
14(b)	9	1	

© UCLES 2017 Page 2 of 4

Cambridge IGCSE – Mark Scheme **PUBLISHED**

Question	Answer	Marks	Part Marks
15	$[\pm]\sqrt{\frac{p}{2}}$ oe	2	M1 for $\frac{p}{2} = q^2$ or $\sqrt{p} = \sqrt{2} q$ or $[q =]$ $\sqrt{their \frac{p}{2}}$ or $[q =]$ $\frac{\sqrt{p}}{their \sqrt{2}}$
16(a)	Correct bisector with correct arcs	2	B1 for correct bisector but no arcs or correct arcs but no line $\frac{1}{2} \frac{1}{2} 1$
16(b)	Correct region shaded	1	
17	4.34 or 4.336 to 4.337	3	M2 for $\frac{8.15 \sin 30}{\sin 110}$ or M1 for $\frac{\sin 110}{8.15} = \frac{\sin 30}{AC}$ oe
18	2859.75 2968.75 cao final answer	3	B2 for one correct seen or B1 for 62.5 or 61.5 or 46.5 or 47.5 seen or M1 for $(62 + 0.5) \times (47 + 0.5)$ or $(62 - 0.5) \times (47 - 0.5)$
19	37.4 or 37.38 and 142.6 or 142.6	3	B2 for one correct or M1 for $0.5 \times 8 \times 7$ sin = 17 oe If zero or M1 only scored, SC1 for two answers with a sum of 180
20	$\frac{2x^2 + x - 7}{3(x+1)} \text{ or } \frac{2x^2 + x - 7}{3x+3}$ final answer	3	M1 for $(2x-1)(x+1)-2 \times 3$ oe with an attempt to expand the brackets B1 for $3(x+1)$ or $3x+3$ for denominator
21	1.5 or $\frac{3}{2}$ or $1\frac{1}{2}$	3	M1 for $\frac{k}{\sqrt{1+x}}$ M1 for $y = \frac{their \ k}{\sqrt{1+15}}$ or M2 for $\frac{2}{\sqrt{1+15}} = \frac{y}{\sqrt{1+8}}$
22(a)	(3t+u)(3t-u) final answer	2	B1 for $(at + bu)(ct + du)$ final answer where $ac = 9$ or $ad + bc = 0$ or $bd = -1$
22(b)	(c-2d)(2-p) or $(p-2)(2d-c)$ final answer	2	M1 for $2(c-2d) - p(c-2d)$ or $c(2-p) - 2d(2-p)$ or $p(2d-c) - 2(2d-c)$ or $2d(p-2) - c(p-2)$
23(a)(i)	24	1	
23(a)(ii)	5	1	

© UCLES 2017 Page 3 of 4

Cambridge IGCSE – Mark Scheme **PUBLISHED**

Question	Answer	Marks	Part Marks
23(a)(iii)	7/12	1	
23(b)		1	
24(a)	Similar	1	
24(b)	5.6	2	M1 for $\frac{4}{8} = \frac{2.8}{AX}$ oe
24(c)	$\frac{y}{4}$ oe	1	
25(a)	$8x^{12}$ final answer	2	B1 for $8x^k$ or kx^{12} in final answer $k \neq 0$
25(b)	9	2	M1 for $27^{\frac{2}{3}}$ or 3^k or $p^{\frac{1}{2}} = 3$ or $p^3 = 729$
26	[w=] 40	1	
	[x=] 95	2	B1 for angle $ABC = 85$ or their $w + their CBD = 85$
	[y =] 45	2	B1 for angle $CBD = 45$ or angle $ACD = 40$ or angle $ACD = their w$ or $y = their CBD$
27(a)	y = 2x + 4	3	B2 for $2x + 4$ or $y = 2x + c$ or $y = mx + 4$ or B1 for $2x + c$ or for $kx + 4$ or M1 for rise/run
27(b)	$y = -\frac{1}{2}x + \frac{3}{2}$ oe	4	B1 for (-1, 2) M1 for the gradient $-\frac{1}{2}$ oe or $\frac{-1}{their\ 2}$ oe M1 for substituting <i>their</i> (-1, 2) into <i>their</i> $y = mx + c$ oe