

Cambridge International Examinations Cambridge International General Certificate of Secondary Education

CANDIDATE NAME		
 CENTRE NUMBER		CANDIDATE NUMBER
MATHEMATICS		0580/31
Paper 3 (Core)		October/November 2016
		2 hours
Candidates answer or	n the Question Paper.	
Additional Materials:	Electronic calculator Tracing paper (optional)	Geometrical instruments

READ THESE INSTRUCTIONS FIRST

Write your Centre number, candidate number and name on all the work you hand in.

Write in dark blue or black pen.

You may use an HB pencil for any diagrams or graphs.

Do not use staples, paper clips, glue or correction fluid.

DO NOT WRITE IN ANY BARCODES.

Answer all questions.

If working is needed for any question it must be shown below that question.

Electronic calculators should be used.

If the degree of accuracy is not specified in the question, and if the answer is not exact, give the answer to three significant figures. Give answers in degrees to one decimal place.

For π , use either your calculator value or 3.142.

At the end of the examination, fasten all your work securely together. The number of marks is given in brackets [] at the end of each question or part question. The total of the marks for this paper is 104.

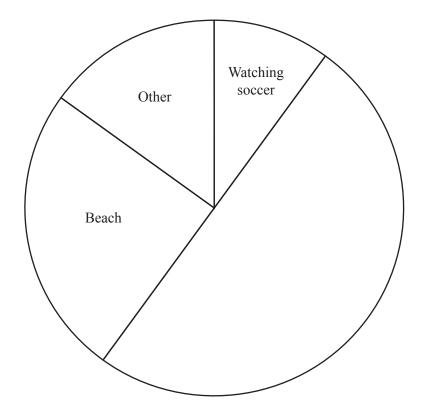
The syllabus is approved for use in England, Wales and Northern Ireland as a Cambridge International Level 1/Level 2 Certificate.

This document consists of **15** printed pages and **1** blank page.

- 1 (a) Juan and his family fly from London to Rio de Janeiro.
 - (i) The plane departs at 10 20 and arrives in Rio de Janeiro 11 hours 40 minutes later. The local time in Rio de Janeiro is 5 hours behind the local time in London.

Work out the time in Rio de Janeiro when the plane arrives.

			[2]
	(ii)	The total cost of the plane tickets is 3500 pounds (£). The exchange rate is $\pounds 1 = 4.45$ Brazilian Real.		
		Calculate the cost of the tickets in Brazilian Real.		
			Real [1]
(b)	(i)	Juan and his family go to a soccer match. He buys 2 adult tickets and 2 child tickets. The price of an adult ticket is 660 Brazilian Real. The price of a child ticket is $\frac{2}{3}$ of the price of an adult ticket.		
		Calculate the total cost of the tickets.		


(ii) The length, x metres, of the soccer pitch is 105 m, correct to the nearest metre.

Complete the statement about the value of *x*.

(c) The table shows how Juan and his family spent their time in Rio de Janeiro.

Activity	Percentage of time	Sector angle in a pie chart
Watching soccer	10	36°
Sleeping		108°
Shopping		
Beach	25	90°
Other	15	54°

- (i) Complete the table.
- (ii) Complete the pie chart.

[3]

[1]

- 4
- 2 Javier went to a carnival with his friends.
 - (a) He played five games of darts. These are his scores.

160 58 45 82 125

- (i) Work out his mean score.
- (ii) Find the range.

(b) The 5000 tickets for the carnival are different colours. The table shows the number of tickets of each colour.

Colour of ticket	Red	Green	Blue	Pink	White
Number of tickets	370	560	1800	1320	950

A ticket is picked at random.

Find the probability that this ticket is Blue.

.....[1]

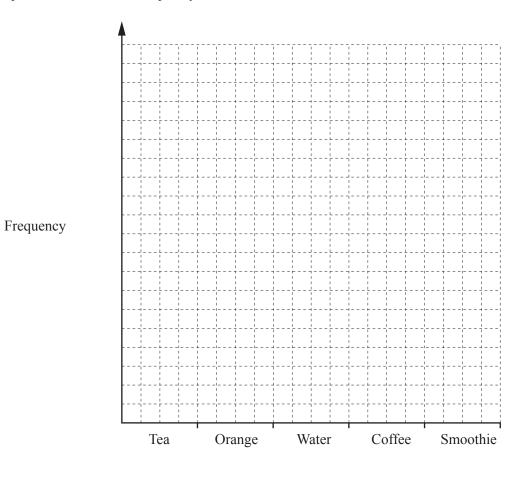
(c) Five different types of food are sold at the carnival. Javier chooses one of these types of food. The table shows the probability that he chooses each type of food.

Type of food	Curry	Fries	Pasta	Burger	Salad
Probability	0.15	0.23	0.4		0.07

Complete the table.

(d) Javier hires a four-seater bike.

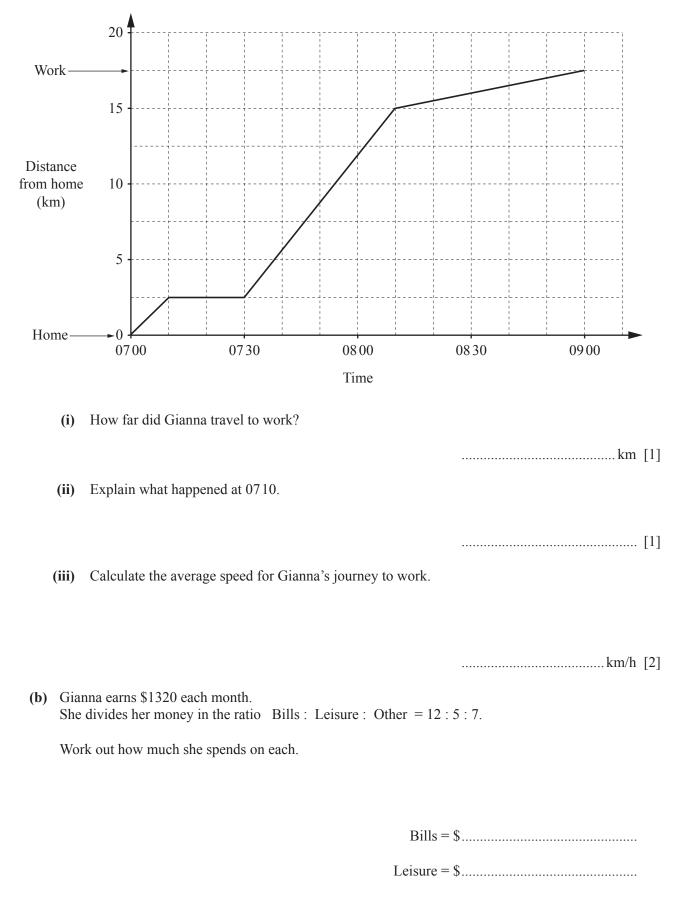
The hire cost is \$8.50 for the first hour and then \$7.75 for each extra hour.


Calculate the cost of hiring the bike for 5 hours.

[2]

Drink	Number sold				
Теа	70				
Orange	60				
Water	120				
Coffee	180				
Smoothie	40				


(e) The table shows the number of drinks sold by one stall at the carnival.


Draw a bar chart to show this information. Complete the scale on the frequency axis.

[3]

(a)			6	144	63	11	288	72	8
	Froi	n the list, write	down						
	(i)	the multiple o	f 7,						
									[1]
	(ii)	the cube of 2,							
	(;;;;)	the prime pup	nher						[1]
	(111)	the prime num	ioer,						
									[1]
	(iv)	the lowest cor	nmon i	nultiple	(LCM)	of 16 an	d 18.		
									[1]
(b)	Wit	hout using a cal	culator	r explain	why the	e square	of 4.86 n	nust be l	between 16 and 25.
									[1]
(c)	Finc	the value of							
	(i)	4 ⁷ ,							
									[1]
	(ii)	12 ⁰							
	(11)	,							
									[1]
	(iii)	$8.3^2 + \sqrt{27}$.							
									[1]
(d)	Wri	te 90 as the pro	duct of	f its prim	e factors	5.			
	(b) (c)	From (i) (ii) (iii) (iv) (b) With (iv) (c) Fino (i) (ii)	From the list, write (i) the multiple of (ii) the cube of 2, (iii) the cube of 2, (iii) the prime num (iv) the lowest cord (b) Without using a call (c) Find the value of (i) 4^7 , (ii) 12^0 , (iii) $8.3^2 + \sqrt{27}$.	6 From the list, write down (i) the multiple of 7, (ii) the cube of 2, (iii) the prime number, (iv) the lowest common r (b) Without using a calculator (c) Find the value of (i) 4^7 , (ii) 12^0 , (iii) $8.3^2 + \sqrt{27}$.	6 144 From the list, write down (i) the multiple of 7, (ii) the cube of 2, (iii) the prime number, (iv) the lowest common multiple (b) Without using a calculator explain (c) Find the value of (i) 4^7 , (ii) 12^0 , (iii) $8.3^2 + \sqrt{27}$.	6 144 63 From the list, write down (i) the multiple of 7, (ii) the cube of 2, (iii) the prime number, (iv) the lowest common multiple (LCM) of (b) Without using a calculator explain why the (c) Find the value of (i) 4^7 , (ii) 12^0 , (iii) $8.3^2 + \sqrt{27}$.	6 144 63 11 From the list, write down (i) the multiple of 7, (ii) the cube of 2, (iii) the prime number, (iv) the lowest common multiple (LCM) of 16 and (b) Without using a calculator explain why the square (c) Find the value of (i) 4^7 , (ii) 12^0 , (iii) $8.3^2 + \sqrt{27}$.	6 144 63 11 288 From the list, write down (i) the multiple of 7, (ii) the cube of 2, (iii) the prime number, (iv) the lowest common multiple (LCM) of 16 and 18. (b) Without using a calculator explain why the square of 4.86 n (c) Find the value of (i) 4^7 , (ii) 12^0 , (iii) $8.3^2 + \sqrt{27}$.	6 144 63 11 288 72 From the list, write down (i) the multiple of 7, (ii) the cube of 2, (iii) the prime number, (iv) the lowest common multiple (LCM) of 16 and 18. (b) Without using a calculator explain why the square of 4.86 must be l (c) Find the value of (i) 4^7 , (ii) 12^0 , (iii) $8.3^2 + \sqrt{27}$.

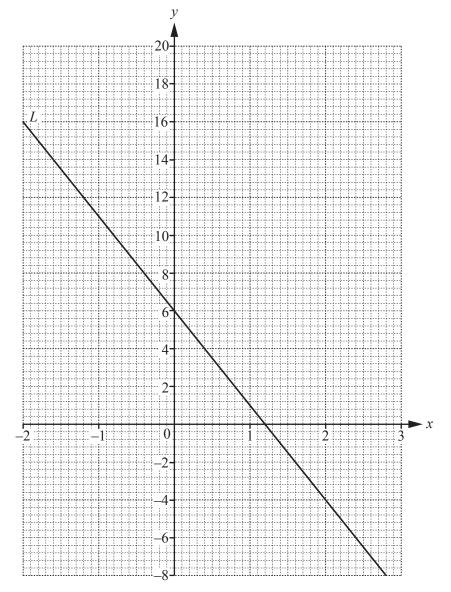
5 (a) This graph shows Gianna's journey to work.

Other = \$.....[3]

(c) Gianna invests \$5000 for 3 years at a rate of 2.1% per year compound interest.

Calculate the amount she will have at the end of the 3 years. Give your answer correct to 2 decimal places.

\$.....[4]


6 (a) Here are the first four terms of a sequence.

18 25 32 39

	(i)	Write down the next term.	
	(ii)	Explain how you worked out your answer.	[1]
(b)	The	e <i>n</i> th term of another sequence is $n^2 + 3$.	
	Writ	ite down the first three terms of this sequence.	
			,
(c)	Simp	nplify.	
	(i)	6a + 5h - 4a - 8h	
	(ii)	5(x+3) + 4(2x-6)	[2]
(d)	Facto	torise.	[2]
		6g + 15	
			[1]
(e)		ectangle has length $(x + 6)$ cm and width 5 cm. e area of this rectangle is 85 cm ² .	

Find the value of x.

x =[3]

(a) The line *L* is drawn on the grid.

Find the equation of the line in the form y = mx + c.

(b) (i) Complete the table of values for $y = x^2 + 2x + 4$.

x	-2	-1	0	1	2	3
у	4		4	7		19

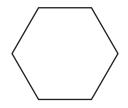
[2]

- (ii) On the grid above, draw the graph of $y = x^2 + 2x + 4$ for $-2 \le x \le 3$. [4]
- (c) For $-2 \le x \le 3$, write down the x co-ordinate of the point of intersection of the curve $y = x^2 + 2x + 4$ with the line L.

x =		[1]
	[Turn o	over

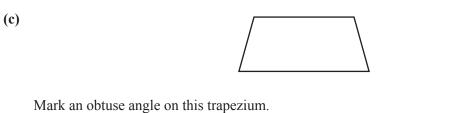
 + 		 	 	 	 		
 		 	 	 	 	L	
 ÷		 	 	 	 		
 	; 	 	 	 	 		
 ¦ 	 	 	 	 	 		

8 (a) A cuboid measures 6 cm by 3 cm by 2 cm.


(i) On this 1 cm^2 grid, complete the net of the cuboid.

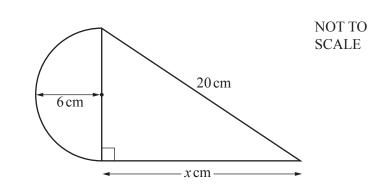
(ii) Calculate the volume of the cuboid.

..... cm³ [2]


[3]

(b)

Write down the mathematical name of this shape.


12

13

(d) A regular polygon has an exterior angle of 22.5° .

Work out how many sides this polygon has.

The diagram shows a shape made from a semi-circle, radius 6 cm, and a right-angled triangle.

Show that x = 16. (i)

(e)

(ii) Calculate the area of the shape.

[2]

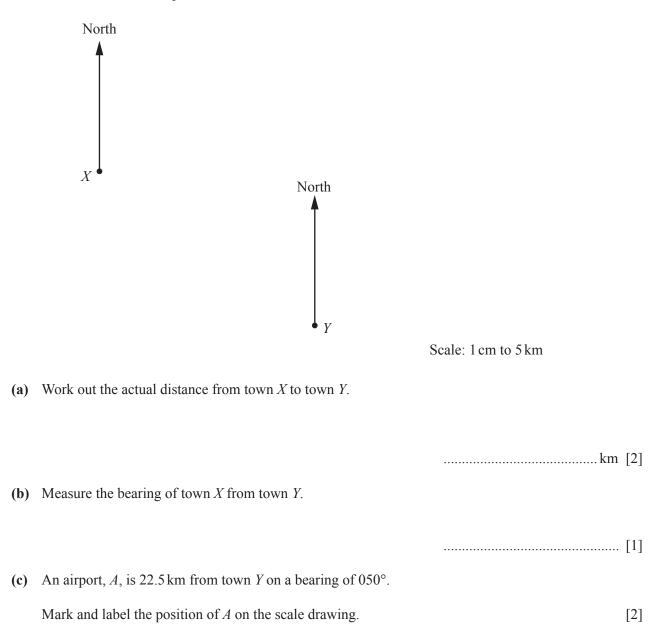
[1]

..... cm² [5]

- 9 (a) The area of Cuba, in square kilometres, is one hundred and five thousand eight hundred and six.Write this number in figures.
 - (b) The population of an island is 103 000.Write this number in standard form.

.....[1]

(c) The table shows some populations in 2014.


	Population
Puerto Rico	3.68×10^{6}
St Maarten	4.61×10^4
Haiti	1.05×10^{7}
US Virgin Islands	$1.07 imes 10^5$

(i) Write the population of St Maarten as an ordinary number.

			[1]
	(ii)	Complete the statement.	
		The population of Haiti is approximately times the population of the US Virgin Islands.	[1]
	(iii)	Find the difference between the population of Haiti and the population of Puerto Rico. Give your answer in standard form.	
			[2]
(d)	d) In 2013 the population of a town was 30405. In 2014 the population was 30851.		
	Calo	culate the percentage increase in the population.	

.....% [3]

10 The scale drawing shows the positions of two towns, *X* and *Y*. The scale is 1 centimetre represents 5 kilometres.

BLANK PAGE

Permission to reproduce items where third-party owned material protected by copyright is included has been sought and cleared where possible. Every reasonable effort has been made by the publisher (UCLES) to trace copyright holders, but if any items requiring clearance have unwittingly been included, the publisher will be pleased to make amends at the earliest possible opportunity.

To avoid the issue of disclosure of answer-related information to candidates, all copyright acknowledgements are reproduced online in the Cambridge International Examinations Copyright Acknowledgements Booklet. This is produced for each series of examinations and is freely available to download at www.cie.org.uk after the live examination series.

Cambridge International Examinations is part of the Cambridge Assessment Group. Cambridge Assessment is the brand name of University of Cambridge Local Examinations Syndicate (UCLES), which is itself a department of the University of Cambridge.