MARK SCHEME for the June 2004 question papers

	5070 CHEMISTRY
5070/01	Paper 1 (Multiple Choice), maximum raw mark 40
5070/02	Paper 2 (Theory 1), maximum raw mark 75
5070/03	Paper 3 (Practical 1), maximum raw mark 40
5070/04	Paper 4 (Theory 2 (A2 Core)), maximum raw mark 60

These mark schemes are published as an aid to teachers and students, to indicate the requirements of the examination. They show the basis on which Examiners were initially instructed to award marks. They do not indicate the details of the discussions that took place at an Examiners' meeting before marking began. Any substantial changes to the mark scheme that arose from these discussions will be recorded in the published *Report on the Examination*.

All Examiners are instructed that alternative correct answers and unexpected approaches in candidates' scripts must be given marks that fairly reflect the relevant knowledge and skills demonstrated.

Mark schemes must be read in conjunction with the question papers and the *Report on the Examination*.

• CIE will not enter into discussion or correspondence in connection with these mark schemes.

CIE is publishing the mark schemes for the June 2004 question papers for most IGCSE and GCE Advanced Level syllabuses.

UNIVERSITY of CAMBRIDGE International Examinations GCE O LEVEL

MARK SCHEME

MAXIMUM MARK: 40

SYLLABUS/COMPONENT: 5070/01

CHEMISTRY Paper 1 (Multiple Choice)

Page 1		Mark So	cheme	Syllabus	Paper
		CHEMISTRY -	– JUNE 2004	5070	1
	Question Number	Key	Question Number	Key	
-	1	В	21	Α	
	2	В	22	В	
	3	В	23	D	
	4	В	24	D	
	5	D	25	С	
_	6	В	26	В	
	7	D	27	D	
	8	В	28	В	
	9	Α	29	D	
_	10	С	30	В	
_					
	11	В	31	Α	
	12	D	32	Α	
	13	С	33	В	
	14	В	34	C	
_	15	С	35	C	
_					
	16	D	36	С	
	17	D	37	D	
	18	В	38	C	
	19	A	39	C	
	20	С	40	Α	

Total = 40

June 2004

GCE O LEVEL

MARK SCHEME

MAXIMUM MARK: 75

SYLLABUS/COMPONENT: 5070/02

CHEMISTRY Paper 2 (Theory 1)

KEY

a semi colon;	indicates a separation of marking points
an oblique line /	indicates alternative wording or acceptable alternative
R	means reject
A	means accept
AW	means 'alternative wording'
underlined with a <u>straight line</u>	accept this word only, no alternative word is acceptable
D	represents quality mark(s) awarded for diagrams, as indicated on the Mark Scheme
L	represents mark(s) awarded for labels on diagrams, as indicated on the Mark Scheme
Q	represents quality of expression and is used for marks awarded on free-response questions

Page 1	Mark Scheme		Paper
	CHEMISTRY – JUNE 2004	5070	2

Section A Maximum 45 marks

- A.1 four <u>names</u> at {1} each penalise correct formulae once only
- (a) methane
- (b) potassium nitrate
- (c) potassium nitrate or lead(II) nitrate allow just lead nitrate
- (d) phosphorus oxide *or* sulphur dioxide

total [4]

Page 2	Mark Scheme		Syllabus	Paper
	CHEMISTRY – JUNE 200)4	5070	2
A.2				
• •	ne K 39 p =19, e = 19, n = 20 d line K 40 p =19, e = 19, n = 21	{1} {1}	{2	}
(b) any <u>tw</u>	r <mark>o</mark> from:			
floa	ats melts silvery ball runs around	lilac flame	{2	}
• •	95/39 = 0.005 mol K hence I OH⁻ = 0.005	{1}		
(ii) ma	$I H^{+} = 0.010$	{1}		
(iii) ion	ic equation	{1}		
	$H^{*} \ + \ OH^{\scriptscriptstyle -} \ \rightarrow \ H_2O$			
ign	ore any state symbols			
be	is 1 to 4 cause an excess of HCI present an extra 0.005 mol acid present	{1} {1}		
		{4} on Q. paper, b	out {5	}
• • •	assium ion has 2. 8. 8 and +1 charge de ion has 2. 8 and – 2 charge	{1} {1}	{2	}

total [12]

Pag	je 3	Mark Sch CHEMISTRY –		Syllabus 5070	Pape 2
				5070	<u> </u>
A.3					
(a)		ks only for the reasons for the y other polymer chosen, {0} f			
		able temp. is above 100 °C luble in oil	{1} {1}	{2	2}
(b)	poly	thene used for cling film pla	stic bags etc. {1}		}
(c)	any	<u>two</u> problems from			
		biodegradable litter fillin ing gives toxic gases	g landfill sites	{2	2}
 (d)		cture of poly(propene)			
		ect repeat unit vs continuation	{1} {1}	{2	2}
e) i)	este	r linkage	{1}		
ii)	fats	lipids	{1}	{2	2}
(f)	nylo	n structure	{1}		•
	allov	v protein or nylon 6		{1	}

total [10]

Page 4		Mark Scheme		Syllabus	Paper
		CHEMISTRY – JUNE	2004	5070	2
A.4					
(a) (i)	equa	ation	{1}		
	N ₂ -	$+ O_2 \rightarrow 2 \text{ NO}$			
(ii)		e collisions per unit volume ore crowded molecules	{1}		
(ii)		er molecules ce more frequent collisions	{1} {1}	{4	ł}
(b)	inco	mplete combustion	{1}		}
(c)					
(i)	equa	ation	{1}		
	2 NC	$D + 2 CO = 2 CO_2 + N_2$			
	igno	re state symbols			
(ii)		der has a large surface area ce faster reaction	{1} {1}	{3	11

total [8]

Page 5	ge 5 Mark Scheme		Paper
	CHEMISTRY – JUNE 2004	5070	2

A.5

or Cu ²⁺ gains electron	S		
		(1}	
equation		{1}	
$Cu \rightarrow Cu^{2+}$ + 2 e ⁻			(2)
			{3}
in solid ions cannot mo in melt ions can move	ve	{1} {1}	
		{1} {1}	
allow {1} if equations re	eversed		
			{4}
	or Cu^{2+} gains electron or Cu^{2+} is reduced oxidation is electron los or oxidation state of ox equation $Cu \rightarrow Cu^{2+} + 2e^{-}$ in solid ions cannot move in melt ions can move cathode $Pb^{2+} + 2$ anode $2Br^{-} \rightarrow$	or Cu^{2^+} gains electrons or Cu^{2^+} is reduced more easily than H oxidation is electron loss or oxidation state of oxygen increases equation $Cu \rightarrow Cu^{2^+} + 2 e^-$ in solid ions cannot move in melt ions can move cathode $Pb^{2^+} + 2 e^- \rightarrow 2 Pb$	or Cu^{2^+} is reduced more easily than H*{1}oxidation is electron loss or oxidation state of oxygen increases(1)equation{1} $Cu \rightarrow Cu^{2^+} + 2 e^-$ in solid ions cannot move{1}in melt ions can move{1}cathode $Pb^{2^+} + 2 e^- \rightarrow 2 Pb$ {1}anode $2 Br^- \rightarrow Br_2$ {1}

total [7]

Page 6	Mark Scheme	Syllabus	Paper
	CHEMISTRY – JUNE 2004	5070	2

A.6

(a)	covalent		{1}
(b) (i)	both are giant structures <i>or</i> macromolecul many strong bonds to break	les {1}	{1}
(ii)	graphite has fewer strong bonds to break	{1}	{3}
(c)	graphite conducts, diamond does not delocalised electrons in graphite	{1} {1}	{2}

total [6]

Section A. score any 45 from 46

Pag	е 7	Mark Scheme		Syllabus	Paper
		CHEMISTRY – JUNE 200	4	5070	2
Secti	on B				
B.7					
(a)	bond	d formation is exothermic d breaking is endothermic e energy released than absorbed	{1} {1} {1} {1}	{3	}
(b)	diag	ram shows:			
	activ	lled reactant above labelled product. vation energy correctly labelled alpy change correctly labelled	{1} {1} {1}	{3	\$}
(c)		that units are not required) & (iii) some working required to score	both		
(i)	finis	h at 35 ± 1	{1}		
(ii)	mole	s of O $_2$ is 60/24000 = 0.00250	{1} {1}		
(iii)		s of $H_2O_2 = 2x0.0025 = 0.0050$ c. of $H_2O_2 = 20x0.0050 = 0.10$	{1} {1}	{5	i }

score any [10] from [11]

Page 8		Mark Scheme CHEMISTRY – JUNE 2004	Syllabus 5070	Paper 2	
				5070	<u> </u>
B.8					
(a) (i)	equa	ation	{1}		
	2 Ni	S + $3 O_2 \rightarrow 2 \operatorname{NiO} + 2 \operatorname{SO}_2$			
(ii)		+ 32) kg NiS forms (32 + 32) kg SO ₂ kg NiS forms 182x64/91 = 128 kg SO ₂		{3	3}
(b)	beca	covalent ause low b.p. vs small forces present	{1} {1} {1}	{3	3}
(c)	e.g. SO ₂ CO ₂	pound and problem both needed causes acid rain <i>or</i> an effect of acid ra causes greenhouse effect <i>or</i> an effect			
	CO	is toxic		{1	}
(d)	useo	l in hydrogenation of alkenes	{1}	{1	}
(e)		$Zn(NO_3)_2$ no reaction	{1}		
	Ni +	Cu(NO ₃) ₂ soln changes blue to green and/or pink solid	{1}		
	an e	quation	{1}		
	Zn -	+ Ni ²⁺ \rightarrow Zn ²⁺ + Ni + Cu ²⁺ \rightarrow Zn ²⁺ + Cu - Cu ²⁺ \rightarrow Ni ²⁺ + Cu			
				{3	3}

score any [10] from [12]

Page 9		Mark Sche	Syllabus Pa			
		CHEMISTRY – J	UNE 2004		5070	2
B.9						
(a)	equa	ation		{1}		
	C ₁₂ ⊢	$H_{26} \rightarrow C_2 H_4 + C_{10} H_{22}$ et.al.			{1	}
(b)	ethe	ne diagram		{1}	{1	}
(c)	mols	s H = 0.18/1 = 0.18	all three needed for	{1}		
		ula is C ₆ H ₁₈ O ₆ ce empirical is CH ₃ O		{1} {1}	{3	}
(d)	reac	t with steam		{1}		
		g phosphoric acid one of 300 ° to 600 °C; 60 to 8	30 atmos.	{1} {1}		
	just∣	heat, pressure, catalyst scores	{1} only		{3	}
(e) (i)		ur changes from orange to blue cture of ethanoic acid	e/green	{1} {1}		
		v full structure ondensed versions e.g. CH ₃ C0	O₂H; CH₃	СООН		
(ii)	prod	uct structure		{1}		
		₂ H) ₂ or (CHO) ₂ IOCH ₂ .CO ₂ H			{3	}

score any [10] from [11]

Page 10		Mark Scheme CHEMISTRY – JUNE 2004					abus	Paper	
			CHI	EMISTRY – JUNE	2004	•	0	070	2
B.10									
(a)	no n	nark for	Fe ₃ O ₄ alor	ne					
	% F0	e's are	Fe ₃ O ₄	122/160 = 70 168/232 = 74 56/126 = 48	.4	{ 1 }		{3	3}
(b)		-	-	ur statements at govidation states		ach			
		$O_2 \rightarrow d$	CO_2 and O_2 red	uced					
			$\rightarrow 2 \text{ CO}$ and CO ₂ re	duced					
			$CO \rightarrow 2 R$	Fe + 3 CO ₂ D oxidised					
	_	-	$C \rightarrow 2 Fe$ ced and C					{4	}
(c)	mot			in sea of electron	•••••	{1}			
(0)			de around		3	{1}		{2	2}
(d)			gives softe upts the pa	r/more malleable cking	stee	el {1} {1}			2}

score any [10] from [11]

June 2004

GCE O LEVEL

MARK SCHEME

MAXIMUM MARK: 40

SYLLABUS/COMPONENT: 5070/03

CHEMISTRY Paper 3 (Practical 1)

© University of Cambridge International Examinations 2004

Page 1	Mark Scheme	Syllabus	Paper
	CHEMISTRY – JUNE 2004	5070	3

1 Maximum 20 marks

 (a) 3 marks for each reading within 1°C of the Supervisor's value. 1 mark for each reading within 2°C of the Supervisor's value. 	(12)
Any subtraction error (-1), but give the 'accuracy' mark on the corrected value.	
(b) 1 mark for plotting all the points correctly, tolerance one small square.	(4)
Give one mark for two straight lines that intersect, provided that the first two points are used for one of the lines and the second two points for the second line.	
Give 1 mark for each straight line which has been extrapolated so that it passes through the 'origin'.	
Curves score zero	
(c) Highest temperature from the graph. This must be from the point of intersection of the two straight lines.	(1)
(d) Corresponding values for the volume of P and Q (both correct).	(1)
Candidates who fail to score in (c) can score in (d), provided the values correspond to the temperature given in (c).	
(e) Concentration of sodium hydroxide in Q. Method (1) answer (1)	(2)
Candidates who give the incorrect volumes in (d) can score consequentially.	
There are no marks for the correct evaluation of an incorrect expression, answers are required correct to two significant figures.	

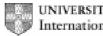
Candidates with the correct answer but no working score (1).

Page 2		Mark Scheme	Syllabus	Paper
		CHEMISTRY – JUNE 2004	5070	2
Solution Test 1	Blue ppt	ohate + ammonia)		
	Ppt turns brow Gas turns litmu Ammonia prod	is blue		
		nsion, powder but not substance, particles, ous, insoluble for precipitate	, deposit, residue,	
Test 2	blue ppt	[ppt (1) colour (1)]		
	soluble in exce blue solution	ess acid		
	allow colourless o	r pale green or blue		
Test 3	White ppt	[ppt (1) colour (1)]		
	Insoluble in aci Dark blue solut	id tion becomes paler or colourless		
	Blue ppt turns to a	white ppt scores (2)		
Test 4	Pale blue ppt a	llow any colour of ppt or even turns	s cloudy etc	
	Soluble in exce Colourless or p	ess bale blue solution		
Test 5	No reaction			
	White ppt Brown or yellow	w solution		
		h for ppt and brown/yellow and an addition ppt and brown/yellow to the solution	al mark for	
:	Solution becom	es colourless or white ppt		
י ן י	The ions are SC requires a ppt in Te NH₄ ⁺ requires ammonia	D ₄ ²⁻ est 3 which does not dissolve when acid is named or tested for in Test 1 ns to score, (-1 for names)	added	

All points to score up to a paper mark of 40.

.

June 2004


GCE A LEVEL

MARK SCHEME

MAXIMUM MARK: 60

SYLLABUS/COMPONENT: 5070/04

CHEMISTRY Paper 4 (Theory 2 (A2 Core))

Page 1	Mark Scheme	Syllabus	Paper
	CHEMISTRY – JUNE 2004	5070	4
• •	ette (1) y bulb (1) event liquid entering the mouth (1)		[3]
 (b) Hydri (c) Sodii [Any 1 (d) Sodii (e) Blue (f) 2Na 			[8]
(c) (i) 0.0 react of hy (d) 0.005 (e) 0.12d	ge (1) s lime water milky (1) 005 (ii) 0.01 (1) (iii) No (1) ion shows that one mole of calcium carbonate requires two drochloric acid (1). x 24 = 0.12 dm ³ (1) m ³ (1) Magnesium carbonate (0.0059 moles) will be in exc e of CO ₂ will be based on HC <i>l</i> as before (1).		[9]
4 to 8	(b), (a), (c), (b), (d) 1 mark each		[4]
9 (a) 6.96 (b) colou (c)	rless or green to pink or purple (1) 25.9 48.6 32.4 1 0.0 23.3 6.9 c	mark for ea orrect row <u>o</u> olumn (3)	
	Mean value = $25.4 \text{ cm}^3(1)$		
(d) 0.000 (f) 0.0254 (h) 3.10 g	(1) (g) 3.86 g (1)		
			[13]
2 blue	rred <u>solution</u> (1) precipitate (1) insoluble in excess (1) precipitate (1) soluble in excess (1) forming a DEEP blue s	solution (1)	

3 blue precipitate (1) soluble in excess (1) forming a DEEP blue solution (1)
4 dilute nitric acid (1) aqueous silver nitrate (1) white precipitate (1)

Formula $CuCl_2(1)$

Page 2	Mark Scheme	Syllabus	Paper
	CHEMISTRY – JUNE 2004	5070	4

11 (a) (i) 0.46 g (1) **(ii)** 36.3 and 25.8 (1) rise in T = 10.5 (1) (b) (i)

- (ii) 74 (1)
- (iii) 0.0062 moles (1)
- (iv) 1693 kJ/mol (1)
- (c) points correctly plotted (1), smooth curve (1).
- (d) (i) 0.062 g (1) (please read candidate's graph) (ii)

-

$$\begin{array}{ccccc}
H & H & H \\
| & | & | \\
H - C - C - C - H \\
| & | \\
H & O & H \\
| \\
H \\
\end{array}$$
(1)

(e) To eliminate error due to heat losses, to standardize the experiment or act as a control etc (1)

[12]