		Name
UNIVERS		E INTERNATIONAL EXAMINATIONS
CHEMISTRY		5070/03
Paper 3 Prac	ctical Test	May/June 2004
Additional Mater	wer on the Question Pap rials: ne Instructions to Superv	
Write in dark blue or blav You may use a pencil fo Do not use staples, pape You may use a calculato Answer all questions. The number of marks is Qualitative analysis note	er, candidate number an ck pen in the spaces pro r any diagrams, graphs o er clips, highlighters, glue or. given in brackets [] at t es are printed on page 8.	e or correction fluid. he end of each question or part question.
provided on the question		alculation and record experimental results in the space
	a label, look at the incorrect or ur correct details	For Examiner's Use
If you have been given a details. If any details are missing, please fill in you	a label, look at the incorrect or ur correct details top of this page.	For Examiner's Use

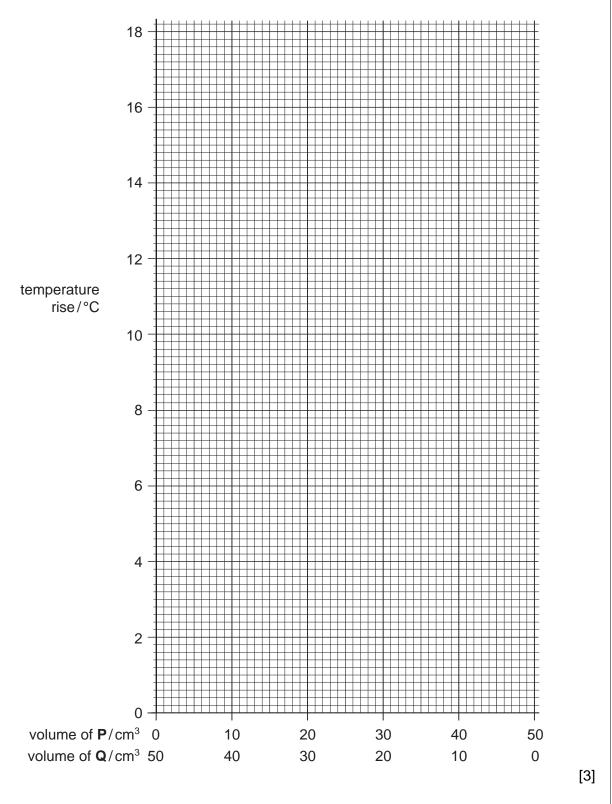
SP (NF/GR) S62898/2	
© UCLES 2004	

1 The reaction between hydrochloric acid and sodium hydroxide is exothermic.

P is 2.0 mol/dm^3 hydrochloric acid.

Q is aqueous sodium hydroxide of unknown concentration.

The concentration of sodium hydroxide in \mathbf{Q} can be found by mixing different volumes of \mathbf{P} and \mathbf{Q} and measuring the increase in temperature.


- (a) (i) Put P into the burette and measure out 10 cm³ of P into a plastic cup. Measure the temperature of P to the nearest 0.5 °C and record the value in column C of the table.
 - (ii) Measure 40 cm³ of Q, as accurately as possible, using a measuring cylinder. Pour this volume of Q into the plastic cup containing P. Stir, using a thermometer and measure the highest temperature reached. Record the value in column D of the table. Calculate the temperature rise for the experiment and record the value in column E of the table.
 - (iii) Empty the plastic cup and rinse it with water.
 - (iv) Repeat the procedure described in (i) to (iii) but using the different volumes of P and Q given in columns A and B of the table.

Α	В	С	D	E
<i>volume of</i> P/cm ³	<i>volume of</i> Q /cm ³	<i>initial</i> <i>temperature</i> of P /°C	highest temperature of mixture/°C	temperature rise/°C
10	40			
20	30			
30	20			
40	10			

[12]

(b) Plot a graph of temperature rise (column E) against volume of P (column A) on the grid opposite. Using these points, draw two straight lines. These lines should cross.

For Examiner's Use

[1]

[1]

(c) From the graph, what is the largest temperature rise which could occur?

Largest temperature rise is°C

(d) Read from the graph, the volumes of both **P** and **Q** which produce the largest temperature rise. These volumes of **P** and **Q** react together to form a neutral solution.

Volume of ${\bf P}$ is $\rm cm^3$

Volume of ${\bf Q}$ is cm³

 (e) P is 2.0 mol/dm³ hydrochloric acid. Using your answers to (d), calculate the concentration, in mol/dm³, of sodium hydroxide in Q.

Concentration of sodium hydroxide in **Q** is mol/dm³

[2]

BLANK PAGE

2 Carry out the following experiments on solution **S** and record your observations in the table. You should test and name any gas evolved.

Test No.	Test	Observations
1	Put a portion of S into a boiling- tube and warm gently .	
2	(a) To a portion of S , slowly add hydrochloric acid until a change is seen.	
	(b) Add excess hydrochloric acid to the mixture from (a).	
3	(a) To a portion of S , add an equal volume of aqueous barium nitrate and allow the mixture to stand for a few minutes.	
	(b) Add nitric acid to the mixture from (a).	

 4 (a) To a portion of S, add an equal volume of water and then add aqueous silver nitrate. (b) Add dilute nitric acid to the mixture from (a). 5 (a) To a portion of S, add an equal volume of aqueous potassium iodide. (b) To a portion of the mixture from (a) add an equal volume of dilute hydrochloric acid and allow the mixture to stand for a few minutes. (c) Add aqueous sodium thiosulphate to the mixture from (b). 			
5 (a) To a portion of S, add an equal volume of aqueous potassium iodide. 5 (b) To a portion of the mixture from (a) add an equal volume of dilute hydrochloric acid and allow the mixture to stand for a few minutes. (c) Add aqueous sodium thiosulphate to the mixture from	4	equal volume of water and then	
 equal volume of aqueous potassium iodide. (b) To a portion of the mixture from (a) add an equal volume of dilute hydrochloric acid and allow the mixture to stand for a few minutes. (c) Add aqueous sodium thiosulphate to the mixture from 			
from (a) add an equal volume of dilute hydrochloric acid and allow the mixture to stand for a few minutes. (c) Add aqueous sodium thiosulphate to the mixture from	5	equal volume of aqueous	
thiosulphate to the mixture from		from (a) add an equal volume of dilute hydrochloric acid and allow the mixture to stand for a	
		thiosulphate to the mixture from	
	L		

7

Conclusions

Give the formulae of two ions present in **S**.

The ions present in **S** are and

[2]

NOTES FOR USE IN QUALITATIVE ANALYSIS

Tests for anions

anion	test	test result
carbonate (CO_3^{2-})	add dilute acid	effervescence, carbon dioxide produced
chloride (C <i>l</i> ⁻) [in solution]	acidify with dilute nitric acid, then add aqueous silver nitrate	white ppt.
iodide (I ⁻) [in solution]	acidify with dilute nitric acid, then add aqueous lead(II) nitrate	yellow ppt.
nitrate (NO ₃) [in solution]	add aqueous sodium hydroxide then aluminium foil; warm carefully	ammonia produced
sulphate (SO ₄ ^{2–}) [in solution]	acidify with dilute nitric acid, then add aqueous barium nitrate	white ppt.

Tests for aqueous cations

cation	effect of aqueous sodium hydroxide	effect of aqueous ammonia
aluminium (Al ³⁺)	white ppt., soluble in excess giving a colourless solution	white ppt., insoluble in excess
ammonium (NH ₄ ⁺)	ammonia produced on warming	-
calcium (Ca ²⁺)	white ppt., insoluble in excess	no ppt. or very slight white ppt.
copper(II) (Cu ²⁺)	light blue ppt., insoluble in excess	light blue ppt., soluble in excess giving a dark blue solution
iron(II) (Fe ²⁺)	green ppt., insoluble in excess	green ppt., insoluble in excess
iron(III) (Fe ³⁺)	red-brown ppt., insoluble in excess	red-brown ppt., insoluble in excess
zinc (Zn ²⁺)	white ppt., soluble in excess giving a colourless solution	white ppt., soluble in excess giving a colourless solution

Tests for gases

gas	test and test result
ammonia (NH ₃)	turns damp red litmus paper blue
carbon dioxide (CO ₂)	turns limewater milky
chlorine (Cl ₂)	bleaches damp litmus paper
hydrogen (H ₂)	"pops" with a lighted splint
oxygen (O ₂)	relights a glowing splint
sulphur dioxide (SO ₂)	turns aqueous potassium dichromate(VI) from orange to green

University of Cambridge International Examinations is part of the University of Cambridge Local Examinations Syndicate (UCLES) which is itself a department of the University of Cambridge.