UNIVERSITY OF CAMBRIDGE INTERNATIONAL EXAMINATIONS

GCE O Level

MARK SCHEME for the May/June 2006 question paper

5070 CHEMISTRY

5070/02 Paper 2 maximum raw mark 75

This mark scheme is published as an aid to teachers and students, to indicate the requirements of the examination. It shows the basis on which Examiners were initially instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began. Any substantial changes to the mark scheme that arose from these discussions will be recorded in the published *Report on the Examination*.

All Examiners are instructed that alternative correct answers and unexpected approaches in candidates' scripts must be given marks that fairly reflect the relevant knowledge and skills demonstrated.

Mark schemes must be read in conjunction with the question papers and the *Report on the Examination*.

CIE will not enter into discussion or correspondence in connection with these mark schemes.

CIE is publishing the mark schemes for the May/June 2006 question papers for most IGCSE and GCE Advanced Level and Advanced Subsidiary Level syllabuses and some Ordinary Level syllabuses

Page 2	Mark Scheme	Syllabus	Paper
	GCE O Level – May/June 2006	5070	02

Section A

Maximum 45 marks

A1 five names at (1) each

penalise correct formulae once only

- (a) nickel
- (b) aluminium or sodium
- (c) aluminium oxide
- (d) nitrogen or phosphorus
- (e) iron or nickel

[Total: 5]

A2 (a) C

[1]

(b) C

[1]

(c) D and E both needed for

[1]

(d) six entries to the table:

all six correct

(2)

five correct

(1)

less than five

(0)

[2]

	atom	ion
protons	19	19
electrons	19	18
neutrons	20	20

[Total: 5]

				GCE O Level – May/June 2006	5070	02
А3	(a)	(i)	one o	characteristic:	(1)	
			e.g.	same chemical reactions gradation in physi differ by CH ₂	cal properties	
			<u>not</u>	has a general formula		
		(ii) not		ula is C _n H _{2n} ₂) _n	(1)	
						[2]
	(b)	(i)	equa	tion: $2C_3H_6 + 9O_2 \rightarrow 6CO_2 + 6H_2O$		
			•	mbols correct ct balance	(1) (1)	
		(ii)	subst	titution reaction	(1)	
						[3]
	(c)			pene <i>or</i> propylene ructure with double bond shown and all H atoms indi	(1) icated (1)	
						[2]
						[Total: 7]
A4	(a)	equ	ation:	$CaCO_3 \rightarrow CaO + CO_2$		[1]
	(b)	(i)	equa	tion: CaO + $H_2O \rightarrow Ca(OH)_2$	(1)	
		(ii)	name	e is calcium carbonate	(1)	
						[2]
	(c)	any	one la	arge scale use e.g.		
		neu	tralise	mortar/ making plaster/ for limewash/ softening acid soil/ manufacture of sodium carbonate/ wash emoving acidic gases or removing acidic waste in in-	ning soda/ mak	
						[1]
	(d)	cald	culatio	n		[3]
		•	456 g	Ca_3SiO_5 is 228, $Ca(OH)_2$ - 74 g Ca_3SiO_5 gives 222 g $Ca(OH)_2$ (mark for correct rat g Ca_3SiO_5 gives 444 g $Ca(OH)_2$	io)	

Mark Scheme

Syllabus

Paper

[Total: 7]

Page 3

Page 4		Mark Scheme	Syllabus	Paper
		GCE O Level – May/June 2006	5070	02
		ıla is SiC		[1]
(b)		nite has free / delocalised / mobile electrons oes not	(1) (1)	
			`,	[2]
(6)	/i\ C	SiC has many strong /covalent bonds	(1)	i-1
(c)	()			
	(II) a	liamond has stron <u>ger</u> bonds	(1)	
				[2]
(d)	answ	er 4.40 g		[1]
				[Total: 6]
A6 (a)		bservations at (1) each: /on the surface moves bubbles dissolves/disappears	•	[2]
			5	[2]
(b)	equat	tion: 2 Li + 2 H ₂ O \rightarrow 2 LiOH + H ₂		[1]
(c)	electr	on loss is oxidation or oxidation is an increase in O.N.		[1]
(d)		bservations des/pops burns/flame		[2]
	onp.o	aco, pope Same, name		[Total: 6]
A.7. (-)	<i>(</i> '')	and the same for each by A. San Hara		[Total. 0]
A7 (a)		raphs are (roughly) similar or high CO ₂ matches high temperatures	(1)	
	(ii) <u>t</u> \	<u>wo</u> effects at (1) each:		
		nelting of polar ice or rise in sea levels lesertification/ <u>extreme</u> climate changes/effect on animal/	plant habitats(2)	
			. ,	[3]
(b)		nd cross for CO ₂ ts (1) only no double bond (0)	(2)	[-]
	an do	ts (1) only the double bolid (0)	(2)	[2]
(c)	(i) <u>n</u>	ame methane	(1)	
	(ii) c	ow flatulence or decay of vegetation	(1)	
	(iii) t	wo points from		
	0	zone absorbs u.v. light/protects against u.v. light CFC's or chlorine atoms react with ozone		
		CFCs deplete the ozone layer/reduce the amount of ozor	ne (2)	
				[4]
				[Total: 9]

[Total for Section A: 45]

Page 5	Mark Scheme	Syllabus	Paper
	GCE O Level – May/June 2006	5070	02

Section B

Answer any three questions

B8 (a) source is fertilisers or detergents

[1]

- (b) any three points from four
 - algal bloom forms
 - this blocks sunlight
 - water plants die
 - bacteria remove oxygen from the water

[3]

(c) (i) either add Al and NaOH and warm

NH₃ turns litmus blue

or add <u>conc.</u> H₂SO₄ and FeSO₄ brown ring forms

(1)

(2)

(ii) nitrate ion too dilute

[3]

(d) calculation

mols of I_2 is $0.508/(2 \times 127) = 0.002$ mols of O_2 is 0.002/2 = 0.001

conc. of O_2 is 0.001/2 = 0.0005 mol dm⁻³

[3]

[Total: 10]

Page 6	Mark Scheme	Syllabus	Paper
	GCE O Level – May/June 2006	5070	02

B9 (a) ionic equation

NH₃ + H⁺ → NH₄⁺ allow full ionic equation showing spectator ions ignore incorrect state symbols

[1]

(b) preparation of KC*l*

- correct reagents: HC1(aq) and KOH(aq) or K2CO3(aq) or KHCO3(aq)
- (description of a) titration
- repeat without the indicator
- evaporate to crystallise or to dryness

[4]

(c)
$$M_r \text{ K}_2\text{CO}_3 = 138 + \text{K}_2\text{SO}_4 = 178 \text{ (or moles K}_2\text{CO}_3 = 3.45/138 = 0.025);}$$

 $1 \times 138g \text{ K}_2\text{CO}_3 \rightarrow 1 \times 178g \text{ K}_2\text{SO}_4 \text{ (or moles K}_2\text{SO}_4 = 0.025);}$
 $3.45g \text{ K}_2\text{CO}_3 \rightarrow 3.45 \times 178/138g \text{ K}_2\text{SO}_4 = 4.35g}$
(or mass $\text{K}_2\text{SO}_4 = 0.025 \times 174 = 4.35g)$

[3]

(d) potassium ion
$$K^{\dagger}$$
 structure 2.8.8 (1)

chloride ion Cl structure 2.8.8 (1)

2.8.8 for both with K and CI shown in centre (1); correct charges (1)

[2]

[Total: 10]

		GCE O Level – May/June 2006	5070	02
B10(a)	ator	ms in brass do not slide as easily		[1]
(b)	(iii)	colour is blue any 5 of: <u>blue precipitate</u> ; $Cu^{2^+} + 2OH^- \rightarrow Cu(OH)_2$ ALLOW: full equation white precipitate masked by blue one/ ppt lighter blue in only hydroxide alone $Zn^{2^+} + 2OH^- \rightarrow Zn(OH)_2$ ALLOW: full equation precipitates are copper hydroxide and zinc hydroxide or of formulae (can be from the equations) part of the precipitate redissolves in excess (sodium hydroxide)	correct	ith copper
(c)	(i)	names: B is zinc chloride C is copper	(1 (1	
	(ii)	ionic equation	(1)
		$Zn + 2 H^+ \rightarrow Zn^{2+} + H_2$		
				[3]
				[Total: 10]
B11(a)	este	er linkage		[1]
(b)	(i)	monomers are amino acids	(1)
	(ii)	nylon is hydrolysed (by the acid)	(1) [2]
(c)	(i)	structure of pvc:	(1)
		-(CH₂ — CHCℓ) _n — or full structure		
	(ii)	weak forces between the molecules	(1)
		allow weak van der Waals forces between molecules		
	(iii)	(orange) bromine is decolourised it is an addition reaction pvc has no double bonds	(1 (1 (1)
(d)	poly cau	from: thene is not biodegradable ses litter or use of land fill sites c/poisonous fumes if burnt	(1 (1 (1)
				[2]
				[Total: 10]

Mark Scheme

Syllabus

Paper

Page 7