MARK SCHEME for the May/June 2009 question paper

for the guidance of teachers

5070 CHEMISTRY

5070/02

Paper 2 (Theory), maximum raw mark 75

This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began, which would have considered the acceptability of alternative answers.

Mark schemes must be read in conjunction with the question papers and the report on the examination.

• CIE will not enter into discussions or correspondence in connection with these mark schemes.

CIE is publishing the mark schemes for the May/June 2009 question papers for most IGCSE, GCE Advanced Level and Advanced Subsidiary Level syllabuses and some Ordinary Level syllabuses.

	Page 2				Paper 02
			GCE O LEVEL – May/June 2009 Section A	5070	02
A 1	(a)	 (a) Vandium(V) oxide / V₂O₅ / vanadium oxide ; NOT: MnO₂ ALLOW: vanadium 			[1]
	(b)	copper(II	I) chloride / CuC l_2 / copper chloride / copper ;		[1]
	(c)	ethanoic	acid / ethanoic / correct formula ;		[1]
	(d)	potassiu NOT: pot	m dichromate(VI) / (potassium) dichromate / correct fo tassium	ormula ;	[1]
	(e)		/ (potassium) dichromate(VI) / manganese(IV) oxide ; (concentrated) sulfuric acid		[1]
					[Total: 5]
A2	(a)	ALLOW: NOT: the NOT: no NOT: has NOT: we	ces <u>between layers</u> / van der Waals forces <u>between la</u> weak bonds <u>between layers</u> e forces are weak / has weak forces between atoms forces / bonds between layers s layers and weak forces eak forces between molecules eak electrostatic forces between layers	<u>yers</u> ;	[1]
			an slide / slip ; oms slide over each other		[1]
	(b)	(all) elect	e / no moving electrons / no delocalised electrons / trons in covalent bonds ; no free electrons / no sea of electrons : no ions		[1]
	(c)	 high IGN0 lots of ALL0 ALL0 ALL0 ALL0 NOT NOT 	ORE: strong / tough melting point ORE: high boiling point of strong (covalent) bonds OW: giant structure of strong bonds OW: has strong bonds throughout OW: all the bonds are difficult to break / takes a lot o ds OW: ideas of all the atoms held together strongly : has covalent bonds / has strong bonds (without qual : rigid arrangement of tetrahedral structure	ification)	[2]
		NOT	: strong forces of attraction between atoms / strong el	ectrostatic forces	

	Page 3			Mark Scheme: Teachers' version	Syllabus	Paper
				GCE O LEVEL – May/June 2009	5070	02
A3	(a)	(i)	NOT: C			[1]
			ions: H	e: copper / Cu ; , OH⁻, SO₄²⁻ ; e needed for the mark)		[1] [1]
		(ii)	hydroge easi <u>er</u> t hydroge ALLOW	en low <u>er</u> in reactivity series (than sodium) / en low <u>er</u> in discharge series (than sodium) / o reduce hydrogen <u>ions</u> (than sodium) / en <u>ions</u> gain electrons more easily ; /: it is lower in reactivity series ydrogen is easier to discharge (than sodium)		[1]
		(iii)	idea of chloride NOT: re NOT: lo	e ions lower in discharge series than hydroxide ions selective discharge of chloride ions/ e ion concentration greater than hydroxide ion conc eference to chlor ine / chlor ine ions ower in discharge series than oxygen hloride ions lower in reactivity than hydroxide		[1]
	(b)	(i)	making	tion of copper/ high grade copper/ E: uses of copper / for coating metals / for electropl	ating	[1]
		(ii)	current: ALLOW	ature: no effect / no change increasing current increases mass (of copper) OR /: mass proportional to current	A	[1] [1]
			time: in ALLOW	/: increase of 1 amp doubles the mass creasing time increases mass (of copper) ORA /: mass proportional to time /: with the passage of time mass increases		[1]
						[Total: 9]
A4	(a)	Cha	arges:	neutron = 0 / zero / none AND proton = + / plus 1 / +1 ;		[1]
		Rel	ative ma	ss: electron = 0 / negligible / 1/1840 / 1/2000 / 0.00 neutron = 1 / one	005 AND	[1]
	(b)	¹¹ ₅ B				[2]
				orrect nucleon and proton number as shown ; orrect symbol ;		
	(c)	number of neut		in two shells AND 5 protons shown ; eutrons other than 6 ; tween 3 and 10 neutrons		[1] [1]
						[Total: 6]

Page 4		ge 4			Paper
			GCE O LEVEL – May/June 2009	Syllabus 5070	02
A5	(a)		t chlorine atoms bonded to carbon by pair of electrons ructure correct i.e. 6 unbonded electrons on each chlo		[1] [1]
	(b)	correct c	2,8,8 and Cl^- as 2,8,8 in diagram or as numbers ; harges at top right of each structure ; correct ions shown as Ca ²⁺ and Cl ⁻		[1] [1]
					[Total: 4]
A 6	(a)	KNO ₃ / C	Ca(NO ₃) ₂ / Fe(NO ₃) ₂ ;		[1]
	(b)	(both aci	ecause <u>H⁺</u> / <u>hydrogen ions</u> present ; dic and hydrogen ions needed) drogen and nitrate ions		[1]
	(c)		25 × 0.450 = 11.25 / 11.3 / 11 ; 56 × 11.25 = 630 (g) ;		[1] [1]
	(d)	of iron(II NOT: iro white pre ALLOW:	reen precipitate ;) hydroxide ; n(III) hydroxide / ppt of iron / ppt due to iron(II) ions ecipitate / ppt of calcium hydroxide formed ; idea of calcium hydroxide precipitate masked / canno ite ppt dissolves in excess	t be seen	[1] [1] [1]
	(e)	add alum heat / wa gas giver ALLOW: NOT: sm NOTE: th correct OR mix solut add <u>conc</u> idea of m brown rin NOTE: th	n off turns (moist) red litmus blue/ ammonia gas given off / nelly gas given off his mark is consequential on both the reagents A <i>l</i> and tion with (freshly made) iron(II) sulfate (solution) ; (1 m <u>centrated</u> sulfuric acid ; (1 mark) haking layer of sulfuric acid over the solution / idea of t ng (at interface) ; (1 mark) his mark is consequential on both the reagents being	ark) wo layers ; (1 ma	ark)
		does not	have to be concentrated		[Total: 11]

[Total: 11]

F	Page 5		Mark Scheme: Teachers' version	Syllabus	Paper	
			GCE O LEVEL – May/June 2009	5070	02	
A7 (a	΄ AL	correct structure of chloroethene ; ALLOW: CH ₂ =CHC <i>l</i> NOT: CH ₂ CHC <i>l</i>				
(b	o) (i)		$C_2H_3Cl - + 5O_2 \rightarrow 2HCl + 4CO_2 + 2H_2O$ OW: multiples / fractions		[1]	
	(ii)		ium chloride ; OW: CaC <i>l</i> ₂		[1]	
(c	со	rrect u g. nylo clotr (bris IGN poly teryl PET myla poly IGN Kevl bulle	hing / fishing lines / fishing nets / ropes / stockings / ttles) / balloons / guitar strings / racquet strings / petrol ORE: fibres without qualifications ester / terylene / mylar / PET (1) ene: clothing / sheets / pillowcases / furniture coveri ropes / sails / machinery belts : bottles and any of the above	tanks (1) ngs / curtains /		

[Total: 5]

Page 6		ge 6	Mark Scheme: Teachers' version	Syllabus	Paper
			GCE O LEVEL – May/June 2009	5070	02
			Section B		
38	(a)	NOT: ide Any one • sep diffe NO com • sep diffe • petr	arated according to different boiling point (from other f erent boiling points / has specific range of boiling points T: incorrect references to petrol e.g. petrol has the nes off at the top arated according to size of molecules (from other fra- erent chain lengths ; rol made by cracking of long chained hydrocarbons / ga	lab ractions) / fractio ; lowest boiling p actions) / fractio	ons have ooints so ons have ;
		• equ	ation showing cracking		[^
	(b)	(i) 10 8	300 g / 10.8 kg		['
		mol ALL octa Mas ALL	es carbon dioxide = $10\ 800\ /\ 44 = 245.45$; es octane = $245.45\ /\ 8 = 30.68$; .OW: 1 mark for showing division of moles of carbon c ane 114; es of octane = $114 \times 30.68 = 3497.5$ (g) / 3498 (g) / 350 .OW: 1 mark for multiplying moles of octane by 114 with culation.	00 (g)	[^ [^
	(c)	NO / nitr	verted to carbon dioxide ; rogen oxide(s) converted to nitrogen ; : CO + NO \rightarrow CO ₂ + $\frac{1}{2}N_2$ = 2 marks (even if not corre	ctly balanced)	['
	(d)		n / effect of acid rain/ smog ; E: breathing difficulties / irritation of nose and throat		['

[Total: 10]

	Page 7			Mark Scheme: Teachers' version	Syllabus	Paper
				GCE O LEVEL – May/June 2009	5070	02
В9	(a)	 Any three of: (1 mark each) have general formula / each member differs by CH₂ group / by M_r of 14 have same functional group have similar chemical properties physical properties show a trend / example of physical property showing boiling points increase with longer carbon chain 			[3] rend e.g.	
	(b)	(i)	any	value between 105 and 130°C (actual = 117°C)		[1]
		(ii)	C ₆ H	₁₃ OH		[1]
	(c)	(i)	_	$_{4} + H_{2}O \rightarrow C_{2}H_{5}OH$ ORE: state symbols		[1]
		``		tion OW: hydration / additional ſ: exothermic		[1]
	(d)	use OR	of m	oles e.g. 180 g glucose \rightarrow 2 × 46 or 92 g ethanol		[1]
		100	mole	es glucose (18000 / 180) $ ightarrow$ 200 moles ethanol ;		
		OR		al yield calculated e.g. 18 kg glucose \rightarrow 9.2 kg ethan 5 = 9200 g ethanol ;	ol	[1]
		200	^ 40			
	% yield c			calculated e.g. 100 × 0.92/9.2 = 10% ;		[1]
						[Total: 10]

Page 8		Mark Scheme: Teachers' version	Syllabus	Paper
		GCE O LEVEL – May/June 2009	5070	02
B10(a)	Correct /	<i>M</i> _r values: (NH ₄) ₂ SO ₄ = 132 AND KNO ₃ = 101 ;		[1]
	OR	NH ₄) ₂ SO ₄ (2 × 14 / 132) = 21.2% / 21.21% ;		[1]
	mass of	N in 500 g = 500 × 28/132 = 106.1 g		
	% N in K OR	NO ₃ (14 / 101) = 13.9% / 13.86% ;		[1]
		n 500 g KNO ₃ = 500 × 14/ 101 = 69.3 g		
	overall p ALLOW:	ercentage = 17.6% / 17.5(5)% / ; 18 %		[1]
(b)	 rapid ALL NOT bloc bact bact NOT aqua 	e from: (one mark each) d growth of algae / water weeds / algal bloom OW: rapid growth of (green) plants T plants grow, unqualified (must be increased/ rapid ef ks (sun)light so plants die erial growth increases eria use up oxygen T algae / plants use up oxygen atic life dies / aquatic animals die / fish die because of T marine organisms die		[3]
(c)	titration / ALLOW: crystallis evaporat	ssium carbonate solution / potassium hydroxide (solut description of titration AND repeat titration without ind titration with indicator then remove indicator with char e / description of crystallisation AND dry with filter pap e off some water AND dry in oven / put in oven to allo ter to evaporate completely / boil off all the water	licator ; coal er /	[1] [1] If water /

[Total: 10]

Pa	Page 9		Mark Scheme: Teachers' version	Syllabus	Paper
			GCE O LEVEL – May/June 2009	5070	02
B11(a)	(i)	to +2	trons lost/ oxidation number (of iron) increases / oxida 2 ; : incorrect oxidation numbers	tion number goe	es from 0 [1]
	(ii)	corre	(aq) + 2OH⁻(aq) → Fe(OH)₂(s) ect balanced equation = 1 mark ect state symbols = 1 mark rk for state symbols dependent on correct formulae)		[2]
(b)	(i)	stop stop stop ALL NOT	s water from getting to the surface (of the iron) / s oxygen getting to surface (of the iron) / s oxygen / water getting to the iron / s air getting to the iron / OW: acts as a <u>protective barrier</u> / <u>layer</u> : ideas about sacrificial protection : tin does not react with water / air / tin less reactive th	an iron	[1]
	(ii)	with	tin: oxygen / water can react with the iron (where it is s	scratched);	[1]
			: iron more reactive than tin zinc any two of:		[2]
		•	zinc more reactive than iron		
		•	NOT: zinc oxide protective layer zinc is sacrificial metal / idea of sacrificial protection readily than iron / zinc reacts first NOT: zinc rusts more readily than iron zinc loses electrons more readily than iron NOT: zinc displaces iron	i.e. zinc corrod	les more
(c)	laye laye NO	er of i er of i T: oxi	r of (aluminium) oxide that will not flake off / nsoluble / unreactive (aluminium) oxide / mpermeable (aluminium) oxide / protective oxide layer ide coating without further qualification ms a protective layer with oxygen	- /	[1]
(d)		cook ALL	c cans / car bodies / aircraft bodies / high voltage elect king foil / window frames / ladders / OW: cooking utensils / mirrors (as does not corrode)	ricity cables /	[1]
		rect e . drink car t aircr	F: for cutlery xplanation related to specific use stated ; xs cans \rightarrow will not react with water / acids bodies \rightarrow will not corrode raft bodies \rightarrow lightweight / low density tricity cables \rightarrow lightweight / good conductor of electric	ity	[1]
					[Total: 10]