MARK SCHEME for the May/June 2010 question paper

for the guidance of teachers

5070 CHEMISTRY

5070/22

Paper 2 (Theory), maximum raw mark 75

This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began, which would have considered the acceptability of alternative answers.

Mark schemes must be read in conjunction with the question papers and the report on the examination.

• CIE will not enter into discussions or correspondence in connection with these mark schemes.

CIE is publishing the mark schemes for the May/June 2010 question papers for most IGCSE, GCE Advanced Level and Advanced Subsidiary Level syllabuses and some Ordinary Level syllabuses.

	Ра	ge 2		Scheme: Teachers' version		Syllabus	Paper	
			GCE	D LEVEL – May / June 2010		5070	22	
A 1	(a)	CF ₃ C <i>l</i>					[1]	
	(b)	CH4 / CC	D_2				[1]	
	(c)	CaCO ₃					[1]	
	(d)	BaSO ₄ /	CaCO ₃				[1]	
	(e)	$K_2Cr_2O_7$					[1]	
	(f)	C_2H_4					[1]	
							[Total: 6]	
A2	(a)	1 / one					[1]	
	(b)	number on number of number of number of number of number of number of All correct of the number of t	atomic) number of protons of electrons of neutrons ct = 2 marks	= 87 = 87 = 87 = 136			[2]	
	(c)	Any two there elec soft low (rela mall duct shin IGNORE IGNORE	mal conductor / ctrical conductor or cuts easily / melting point or atively) low dens leable / tile / y or silvery ALL E: floats on water E: chemical prop	low boiling point / ity or lightweight IGNORE: lig OW: grey IGNORE: white / r / sonorous.	ght		[2]	
	(d)	ALLOW: ALLOW:	$H_2O \rightarrow 2FrOH +$ multiples Fr + $H_2O \rightarrow F$ state symbols				[1]	

[Total: 6]

Page 3	Mark Scheme: Teachers' version	Syllabus	Paper
	GCE O LEVEL – May / June 2010	5070	22

A3 (a) $Zn(s) + 2HCl(aq) \rightarrow ZnCl_2(aq) + H_2(g)$

1 mark for correctly balanced equation;

1 mark for correct state symbols (dependent on all formulae being correct)

- (b) (i) gas escapes / hydrogen escapes / gas given off / hydrogen given off / gas released / hydrogen released / gas produced / gas evolved / hydrogen is a gas;
 [1] NOT: hydrogen produced without qualification. ALLOW: ecf from wrong gas in part (a)
 - (ii) downwards curve starting at the same point as the original curve but displayed to the left (at least at first);

Line ends at the same mass as the original ; [1] NOT: curve dipping markedly below the horizontal section and then going upwards to meet it

(c) (acid) particles in dilute acid are less crowded / there are fewer particles (of acid) in a given volume / the particles (of acid) are further apart ; [1] ALLOW: concentration of HC*l* particles is lower ALLOW: molecules / ions in place of particles ALLOW: molecules / ions in place of particles in concentrated acid are more crowded / there are more particles (of acid) in a given volume etc IGNORE: there are fewer molecules unqualified / there is more water there are more moles in a given volume.

fewer collisions (in dilute acid) / less chance of collisions (in dilute acid) / frequency of collisions lower (in dilute acid) ; [1] ALLOW: reverse argument e.g. more collisions (in concentrated acid) / more chance of collisions (in concentrated acid) ; IGNORE: effective (collisions)

(d) more particles exposed / large(r) surface area ; [1] ALLOW: atoms / ions in place of particles

more collisions / greater chance of collisions / particles collide more often / greater frequency of collisions ; [1] IGNORE: effective (collisions)

(e) white precipitate / ppt or <u>white</u> solid ; [1] IGNORE: bubbles / colourless ppt / incorrectly named ppt

precipitate redissolves (in excess) / precipitate goes to (colourless) solution (in excess); [1] ALLOW: this mark if wrong colour precipitate NOTE: second mark dependent on ppt or solid stated for first mark

[Total: 11]

[2]

Pa	ge 4	Mark S	Syllabus	Paper			
		GCE O	22				
A4 (a)	ALLOW:	has electron(s) th graphite has free : implications of l	e electron(s) / g	raphite has a	sea of ele	ectrons	[1]
	 diamond has <u>all</u> its electrons involved in bonding / has electron(s) that of are not mobile / no delocalised electrons; ALLOW: diamond has no free electron(s) REJECT: mention of ions (b) solid sodium chloride has ions fixed in position / ions cannot move ; IGNORE: electrons cannot move / ions can't carry electricity / references to forces ALLOW: ions are not free 						annot move / [1]
(b)							[1] intermolecular
	aqueous ALLOW: REJECT	: no ions to move sodium chloride ions are free : reference to mo : ions carry elect	has ions that c oving electrons	as well as ior	าร	alised /	[1]
(c)	ALLOW:	ead at cathode a Pb at cathode / E : lead(II) / Pb ²⁺ /	Br ₂ at anode	anode ;			[1]
	2 nd row: (REJECT	oxygen / O ₂ ; : O ^{2–}					[1]
		nydrogen / H₂ ; : H⁺					[1]
(d)	REJECT IGNORE	nydrogen / H₂ ; : H⁺ : H	extraction of	aluminium	or anv	other eleme	ent whic

(d) commercial use e.g. extraction of aluminium or any other element which is definitely extracted by electrolysis / purification of copper / (electro)plating;
 [1] ALLOW: coating metals / hair removal / production of sodium hydroxide NOT: electrolysis of named substance unqualified / reference to electrochemical cells

correct electrolyte / correct formula of electrolyte: This mark is dependent on the correct use BUT allow if it is feasible e.g. zinc sulphate (given incorrect use of zinc in the first part). e.g. molten aluminium oxide dissolved in <u>cryolite</u> / (aqueous) copper sulfate or copper sulfate (solution) / for hair removal accept sweat or sodium chloride (solution). [1]

correct ionic equation: This mark is dependent on the electrolyte used; [1] e.g. $Al^{3+} + 3e^- \rightarrow Al / Cu^{2+} + 2e^- \rightarrow Cu / 2H^+ + 2e^- \rightarrow H_2$

[Total: 10]

Page	5	Mark Scheme: Teachers' version	Syllabus	Paper			
		GCE O LEVEL – May / June 2010	5070	22			
A5 (a) cra	acking		[1]				
(b) (i)		$_{1} + H_{2}O \rightarrow C_{2}H_{5}OH$ OW: C ₂ H ₆ O for the product		[1]			
(ii)	ALL	propanol; ALLOW: propan-1-ol / propan-2-ol IGNORE: formulae					
(c) (i)	REJ IGN •	two from: temperature between 25°C to 40°C / ECT: high temperature IGNORE: room temperature yeast / zymase / enzymes / ORE: catalyst alone absence of oxygen / anaerobic (conditions) / not expose water REJECT: moisture / damp pH neutral / near neutral / pH 7 ORE: pressure / presence of glucose	sed to air	[2]			
(ii)	 (ii) any one of: renewable raw materials used or renewable fuel made NOT: renewa conserves valuable resources / lower energy costs / lower temperature re pressure required / consumes less energy / atmospheric pressure required equipment not required / simple apparatus required; ALLOW: carbon neutral / carbon dioxide made (in this process) can photosynthesis (to make more glucose) NOT: carbon dioxide can photosynthesis alone IGNORE: not as complicated / references to pollution / consumes e qualification NOT: costs alone / faster / uses glucose without qualification 						
		al) distillation / fractionation;		[1]			

- (d) (fractional) distillation / fractionation;
 ALLOW: description of distillation e.g. evaporating then condensing the alcohol (first)
 IGNORE: using an anhydrous salt / named anhydrous salt
- (e) <u>lime water</u> goes milky / cloudy / chalky / misty / white precipitate

[1]

[Total: 8]

Page 6	5	Mark Scheme: Teachers' version	Syllabus	Paper		
		GCE O LEVEL – May / June 2010	5070	22		
A6 (a) (i)) addition ; ALLOW: additional IGNORE: specific names					
(ii)	minir	[1]				
(iii)	 (iii) no (carbon-carbon) double bonds / <u>only</u> has (carbon-carbon) single bonds ALLOW: no hydrogen can be added / no addition reactions / carbons fully (hydrogen atoms) NOT: occupied by wrong atoms e.g. Cl atoms NOT: has carbon-carbon single bonds 					

(b) non-biodegradeable / can't be broken down by bacteria / insoluble in water / <u>only</u> soluble in organic solvents
 [1]
 ALLOW: doesn't react with water / unreactive
 IGNORE: it is a hydrocarbon / it is strongly bonded

[Total: 4]

	Page 7			Mark Scheme: Teachers' version	Syllabus	Paper			
				GCE O LEVEL – May / June 2010	5070	22			
B7	nitrogen harmles ALLOW effect / c NOT: nit			olluting gases formed / harmless gases formed / nitrogen <u>and</u> water are harmless / en <u>and</u> water are non-polluting / the product <u>s</u> are non-polluting/the product <u>s</u> are ess; W: nitrogen and water don't affect ozone / don't contribute (as much) to greenhouse / don't contribute to acid rain nitrogen and water less harmful / nitrogen and water are formed (without qualification) / onmentally friendly products					
	(b)			eaking endothermic / requires energy / absorbs energy nd making exothermic / releases energy / gives out en		[1]			
		RE. NO	JECT TE: (ergy is released than absorbed (or similar wording) ; : implication that energy needed in bond formation energy released on forming bonds is greater tha r similar wording) = 2 marks	an energy taker	[1] n in to break			
	(c)	(i)	mole	es N ₂ H ₄ = 1 000 000 / 32 = 31 250 ;		[1]			
				es O_2 = moles N_2H_4 or implication of this in working ; OW: ecf from wrong moles of N_2H_4		[1]			
				time of O_2 (31 250 × 24) = 750 000 dm ³ / 7.5 × 10 ⁵ dm ³ OW: ecf from second mark.	3;	[1]			
			32 g	rnative for 1 st two stages: N ₂ H ₄ \rightarrow 32g O ₂ (1 mark) es O ₂ = 1 000 000 / 32 = 31 250 (allow ecf) (1 mark)					
		(ii)	ALL	quid oxygen takes up less space / room ; OW: able to store more in liquid form / gaseous volun acity.	ne too high / max	[1] kimum storage			
				ORE: less easily spread out/no gas can escape / less ent reaction with other substances	s possibility of an	explosion / to			
	(d) (i)		ALL ALL	₅ C <i>l</i> / N ₂ H ₆ C <i>l</i> ₂ OW: any order of atoms OW: correct displayed formulae or mixtures of displaye ECT: N ₂ H ₅ C <i>l</i> in equation if more than one product give		[1] r			
		(ii)	NOT IF: ir IF: s	H H • x • x : N : N : • x • x H H cture completely correct = 2 marks TE: (i) only outer shells need be shown (ii) no distinction need be made between dots and nner shells incorrect = 1 mark maximum. tructure with a triple bond and no lone pairs = 1 mark : structures with separate nitrogen atoms / double bor		[2]			

Page 8			8 Mark Scheme: Teachers' version Syllabus						
-		<u> </u>	,	GCE O LEVEL – May / June 2010	5070	Paper 22			
B 8	(a)	(i)	buta	noic acid / methylpropanoic acid ;		[1]			
		(ii)		mum is CH ₃ CH ₂ CH ₂ COOH / (CH ₃) ₂ CHCOOH OW: <u>correct</u> displayed formulae or mixture of structura	l and displayed	[1]			
	(iii) C ₂ H ₄ O								
	(b)	mo	lar rat	tio correct C = 4.35, H = 13.0, O = 2.18 ;		[1]			
	C_2H_6O ALLOW: correct error carried forward as long as there is not too much r or down from the first stage ALLOW: C_2H_5OH								
	(c)	(i)	ethy	l ethanoate ;		[1]			
		(ii)	ALL	ent / flavouring / perfume / aroma / OW: to make the taste in sweets / deodorants ORE: food additive					
	(d)		C ∥ □– C	0 C - O -■- C - O -		[2]			
				ect structure of ester linkage showing ALL atoms e boxes) = 1 mark	and bonds (ind	cluding bonds			
		_	ALLO ALLO NOT ALLO	ast 2 units shown with continuation bonds = 1 mark OW: ester linkages reversed OW: boxes or part formulae between ester linkages the T: more than three type of 'boxes' OW: O $O\ \ \ -C - O - \blacksquare - C —OW: single unit shown bracketed and continuation bonnark dependent on ester linkage being shown correctly$	nds	r –CO2- etc			
		(ii)		lipid / (tri)glyceride;		[1]			

	Page 9			Mark Scheme: Teachers' version GCE O LEVEL – May / June 2010					Syllab		Paper	,	
										5070		22	
B9	(a)	reaction in which there is electron transfer / one reactant loses electrons <u>and</u> the other gains electrons / both oxidation <u>and</u> reduction occur ; [1] ALLOW: a reaction involving change <u>s</u> in oxidation state IGNORE: gaining and losing oxygen / gaining and losing hydrogen									ains [1]		
	 (b) (i) less iodine present / lower concentration of iodine ; NOT: less reactants present / diluted in colour because more colourless 									ess HI	present	[1]	
			right ALLC ALLC	tion of) ed ;)W: more)W: more ases (to a	hydrogen hydroger	and iodir iodide fo	ne react to prmed / n	o form hy	drogen	iodide			[1]
			The r	eaction is	endother	mic / the	reaction a	absorbs h	ieat (or	energy) /	∆ <i>H</i> is p	positive;	[1]
	(c)	ans		nydrogen nly scores 22.7		= 22.65							[1]
				HI = 45.3; ecf / indica	ation that	moles HI	2× moles	of hydro	gen i.e.	use of 1:	2 ratio		[1]
			•	5.3 × 128 ecf moles		-	ł g;						[1]
		2 g so 1	hydrog I g hyd	e method: gen \rightarrow 2 × drogen \rightarrow drogen \rightarrow	: 128 = 2 128 g HI	(1 mark)	,	(1 mark)					
	(d)	(i)	Pb ²⁺ (aq) + 2I⁻(a	aq) \rightarrow P	bI ₂ (s)							[2]
			corre ALLC	iced equa ct state sy)W: full ior X [−] in plac	mbols = nic equati	1 mark (d on	-		ct formı	ulae abov	e)		
		(ii)	it or) oxidis	K is a redu sed ;	ucing age	ent / HI is	a reduci	ng agent	/ it or X	(can be o	oxidise	d / HI cai	n be [1]

Pag	ge 1(0	Mark Scheme: Teachers' version	Syllabus	Paper							
			GCE O LEVEL – May / June 2010	5070	22							
B10(a)	(i)		[1]									
	 (ii) titrate (acid against alkali) / titration / description of titration e.g. add one so other until neutralised / add one solution to another until (acid-base) indic colour; IGNORE: lack of repeating the titration without indicator 											
	Evaporate the solution (from the titration flask to dryness) ; [7]											
			OW: evaporate / heat / boil OW: ecf from wrongly named <u>solution</u> in first marking p	oint								
		ALL(titrat	OW: evaporation etc from potassium chloride / salt	solution withou								
		REJ	ECT. If method incorrect e.g. precipitation the mark for	part (II) is zero	in iolai.							
(b)	(i)		4)3PO4 OW: PO4(NH4)3		[1]							
	(ii)		ar mass (NH ₄) ₃ PO ₄ = 149; OW: ecf from wrong formula in part (i)		[1]							
		ALL	y mass = 28.2 OW: 28.19 / 28 OW: ecf from wrong molar mass		[1]							
(c)	(i)	ALL	$\begin{array}{l} DH)_2 + 2H^+ \rightarrow Ca^{2+} + 2H_2O \\ OW: Ca^{2+} + 2OH^- + 2H^+ \rightarrow Ca^{2+} + 2OH^- + 2H_2O \\ OW: OH^- + H^+ \rightarrow H_2O \text{ (or multiples)} \end{array}$		[1]							
	(ii)	nitro ALL IGN	nonium phosphate (reacts with calcium hydroxide to) g gen (content) with ammonium phosphate OW: reverse arguments ORE: ammonia poisonous / potassium nitrate is more ECT: loses nitrogen gas / potassium nitrate has a grea	soluble	[1]							
(d)		•	ess) sodium hydroxide and aluminium (powder / foil ar add sodium hydroxide and Devarda's alloy	nd warm) ;	[1]							
	ammonia given off / gas (given off) turns red litmus blue; NOTE: this mark is dependent on correct reagents A <i>l</i> + NaOH											
	add	l iron(NOTE: this mark is dependent on correct reagents A <i>l</i> + NaOH Alternative: add iron(II) sulfate then concentrated sulfuric acid (1 mark) brown ring forms at the interface (1 mark)									