MARK SCHEME for the May/June 2011 question paper

for the guidance of teachers

5070 CHEMISTRY

5070/21

Paper 2 (Theory), maximum raw mark 75

This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began, which would have considered the acceptability of alternative answers.

Mark schemes must be read in conjunction with the question papers and the report on the examination.

• Cambridge will not enter into discussions or correspondence in connection with these mark schemes.

Cambridge is publishing the mark schemes for the May/June 2011 question papers for most IGCSE, GCE Advanced Level and Advanced Subsidiary Level syllabuses and some Ordinary Level syllabuses.

Page 2			Mark Scheme: Teachers' version	Syllabus	Paper
			GCE O LEVEL – May/June 2011	5070	21
A 1	Allo	ow corre			
	(a)	V ₂ O ₅ (*)		[1]
	(b)	ZnSO₄	(1)		[1]
	(c)	AgI (1)			[1]
	(d)	CF ₃ C <i>l</i> ₃	(1)		[1]
	(e)	(NH ₄) ₂ \$	50 ₄ / ZnSO ₄ (1)		[1]
	(f)	CH4 (1)		[1]
	(g)	(NH ₄) ₂	SO ₄ (1)		[1]
					[Total: 7]
A2	(a)	sulfur o Allow	lioxide (1) SO ₂		[1]
	(b)	copper Allow	(II) sulfate (1) CuSO₄		[1]
	(c)	H⁺ + (Ignore	$DH^- \rightarrow H_2O(1)$ state symbols		[1]
	(d)	(i) Co Al	pper(II) hydroxide (1) I ow Cu(OH) ₂		[1]
		(ii) Cu Ba Co	$^{2^+}(aq) + 2OH^-(aq) \rightarrow Cu(OH)_2(s)$ lanced equation (1) prrect state symbols (1)		[2]
	(e)	Mol rat	io Cu:O = $\frac{79.9}{64}$: $\frac{20.1}{16}$ / 1.25 : 1.26 (1)		101
		CuO (1)		[2]
					[Total: 8]

	Page 3		3	Mark Scheme: Teachers' version	Syllabus	Paper
				GCE O LEVEL – May/June 2011	5070	21
A3	(a)	(i)	sam arra	e number of electrons / same number of protention ngement of electrons / both have 92 electrons / both ha	ons / same e ave 92 protons (electronic 1) [1]
		(ii)	diffe	rent number of neutrons / uranium-238 has three more	e neutrons (1)	[1]
	(b)	(i)	UO ₂	+ 4HF \rightarrow UF ₄ + 2H ₂ O (1)		[1]
		(ii)	UF_4	+ 2Mg \rightarrow U + 2MgF ₂ (1)		[1]
		(iii)	reac Allo	tion involving gain of electrons / reaction involving dec w a reaction involving the loss of oxygen / gain of hydr	rease in oxidatio ogen	on number (1) [1]
		(iv)	<i>M</i> r o Mole Mas Corr	f UO ₂ = 270 (1) es of UO ₂ = 3704 (1) Allow ecf from wrong M_r is of uranium = 0.881 tonnes (1) Allow ecf from wrong rect answer scores all three marks	moles	
			OR Alter <i>M</i> _r o % of	rnative approach using percentage composition f UO ₂ = 270 (1) f U = 88.1% (1) Allow ecf from wrong M_r	porcontago	[3]
			ividS		percentage	႞ႄ
	(c)	bet	ween	magnesium and copper (1)		[1]
						[Total: 9]

	Pa	ge 4	Mark Scheme: Teachers' version	Syllabus	Paper		
			GCE O LEVEL – May/June 2011	5070	21		
A4	(a)	All covalent bond pairs shown (1) Rest of structure correct (1) Ignore inner shell electrons of oxygen					
	(b)	Must Partic Partic	[2]				
	(c)	Partic unit v So m chanc	e particles per e often / more [2]				
	(d)	(i) $Fe^{2+} \rightarrow Fe^{3+} + e^{-}(1)$ Allow $Fe^{2+} - e^{-} \rightarrow Fe^{3+}$ Allow e instead of e^{-}					
		<i>(</i> ii) ∆	dd sodium hydroxide (solution) / (aqueous) Ammonia	a / add (aqueo	us) hydroxide		
		 (ii) Add sodium hydroxide (solution) / (aqueous) Ammonia / add (aqueou ions (1) Should be a brown-rust ppt (1) 					
	(e)	(Colour change of KMnO ₄ shows) it is a reducing agent / it can be oxidised (1) (Colour change of KI shows) it is an oxidising agent / it can be reduced (1)					
					[Total: 11]		
A5	(a)	78–79	9 % (1)		[1]		
	(b)	Fractional distillation (1)					
	()	of liquid air / liquefy air (1) because (the components of air have) different boiling points (1)					
	(c)	Idea that carbon cycle involves photosynthesis and respiration (1) Photosynthesis decreases carbon dioxide and increases oxygen / green plants cha carbon dioxide into oxygen (1) And					
		any t Resp Comb Deco	wo from ration increases carbon dioxide and decreases oxygen (1 pustion increases carbon dioxide and decreases oxygen (mposition (of living things) increases carbon dioxide (1)) 1)	[4]		
	(_1)	11	in flue was deputienting (and a still for the still for				
	(d)	Used statio	In flue-gas desulturisation / removal of sultur dioxide from n / absorbs the sulfur dioxide / neutralises (acidic) sulfur d	n gaseous emis: lioxide (1)	sions of power		
		Adde	d to lakes to neutralise acidic water (1)		[2]		
					[Total: 10]		

...

_

	Page 5			Mark Scheme: Teachers' version	Syllabus	Paper
				GCE O LEVEL – May/June 2011 5070		21
B6	(a)	Calcium nitrate solution contains ions / AW (1) Pentane only contains molecules / pentane is a covalent compound / pe contain ions (1)				tane does not [2]
	(b)	Sodium and chlorine (1) Allow Na and Cl ₂				[1]
	(c)	Hyd Allo		[1]		
	(d)	Eleo Gra	1)	[2]		
	(e)	(i)	Gets Cu ²⁺	s plated with copper (1) $f + 2e^- \rightarrow Cu (1)$		[2]
		(ii)	1.21	(g)		[1]
		(iii)	1.75	(g)		[1]
						[Total: 10]
B7	(a)	Pro	panol	l / propan-1-ol / propan-2-ol (1)		[1]
	(b)) CH₃CH₂ Only cor Allow th		CH ₂ CH ₂ OH / CH ₃ CH ₂ CHOHCH ₃ (1) Itains (C—C) single bonds (1) ere are no (carbon-carbon) double bonds		[2]
	(c)	C ₇ H Allo	I ₁₆ O(w C ₇	1) 7H ₁₅ OH		[1]
	(d)	(i)	CH ₃	$COOC_2H_5(1)$		[1]
		(ii)	Solv Allo	ent (1) w flavouring / perfume		[1]
	(e)	C ₆ H Use	I ₁₂ O ₆ e of ye	$\rightarrow 2C_2H_5OH + 2CO_2(1)$ east (1)	bsence of oxya	en / anaerohic
		con Ign	dition ore in	ncorrect reactants this has been assessed by the equa	tion	[3]
	(f)	Eth	ene /	C ₂ H ₄ (1)		[1]

[Total: 10]

Page 6			Mark Scheme: Teachers' version	Syllabus	Paper		
			GCE O LEVEL – May/June 2011	5070	21		
B8 (a)	(i)	Posi Allo Beca the p	osition of equilibrium moves to the right (1) Ilow make more CH ₃ COOH ecause the reaction is exothermic / to release energy (1) This mark is dependant on e position of equilibrium moves to the right [2]				
	(ii)	Rea	ction is faster / activation energy is very high (1)		[1]		
(b)	Lab Cor Allo Not Not Max i.e.	belled rrect la ow do t arrow rrect la t arrow te – a ximun ximun entha	nd finish exactly reaction that is	at product or endothermic [3]			
(c)	Lov Allo	vers ti ow me	he activation energy (1) ore effective collisions / more successful collisions		[1]		
(d)	Maximum moles that can be made is 10 / limiting reactant is the carbon monoxide 98% (1)						
(e)	CH	₃ CO ₂ I	NH ₄ (1)		[1]		
					[Total: 10]		
B9 (a)	Onl	ly par	tially dissociates / does not completely ionise (1)		[1]		
(b)	Use Idea cha Alle	e univ a that art (1) ow thi	ersal indicator (1) t the different colours indicate different pH values / ı is mark even for an incorrect indicator	match colour ag	ainst a colour [2]		
(c)	Moles of sulfamic acid = $\frac{0.105}{97}$ / 0.00107 (1)						
	so reacts with one mole (1)						
(d)	(i)	Mg	+ $2SO_3NH_3 \rightarrow Mg(SO_3NH_2)_2$ + H_2 (1)		[1]		
	(ii)	CaC Forn Allo	$O_3 + 2SO_3NH_3 \rightarrow Ca(SO_3NH_2)_2 + H_2O + CO_2 (1)$ ns carbon dioxide / bubbles (1) w carbon dioxide from the equation		[2]		
(e)	e) Nitrogen (1)						
ι - <i>Ι</i>	ITotal: 1						