



# UNIVERSITY OF CAMBRIDGE INTERNATIONAL EXAMINATIONS General Certificate of Education Ordinary Level

CHEMISTRY 5070/11

Paper 1 Multiple Choice May/June 2011

1 hour

Additional Materials: Multiple Choice Answer Sheet

Soft clean eraser

Soft pencil (type B or HB is recommended)

#### **READ THESE INSTRUCTIONS FIRST**

Write in soft pencil.

Do not use staples, paper clips, highlighters, glue or correction fluid.

Write your name, Centre number and candidate number on the Answer Sheet in the spaces provided unless this has been done for you.

There are **forty** questions on this paper. Answer **all** questions. For each question there are four possible answers **A**, **B**, **C** and **D**.

Choose the one you consider correct and record your choice in soft pencil on the separate Answer Sheet.

#### Read the instructions on the Answer Sheet very carefully.

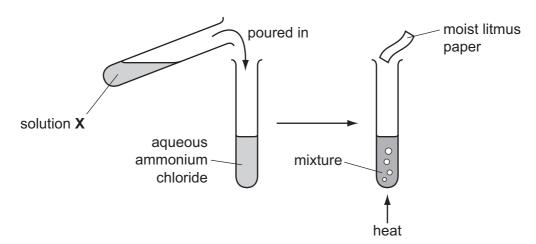
Each correct answer will score one mark. A mark will not be deducted for a wrong answer.

Any rough working should be done in this booklet.

A copy of the Periodic Table is printed on page 16.



1 Copper(II) sulfate crystals are separated from sand using the four processes listed below.


In which order are these processes used?

|   | 1st 2nd    |             | 3rd           | 4th           |
|---|------------|-------------|---------------|---------------|
| Α | filtering  | dissolving  | crystallising | evaporating   |
| В | filtering  | dissolving  | evaporating   | crystallising |
| С | dissolving | evaporating | filtering     | crystallising |
| D | dissolving | filtering   | evaporating   | crystallising |

A drop of liquid bromine is placed in the bottom of a gas jar. Brown fumes of bromine vapour slowly spread through the covered gas jar.

Why does this happen?

- A Bromine vapour is less dense than air.
- **B** Bromine molecules and the molecules in air are always moving around.
- **C** Bromine molecules are smaller than the molecules in air.
- **D** Bromine molecules move faster than the molecules in air.
- 3 The diagrams show an experiment with aqueous ammonium chloride.



A gas, Y, is produced and the litmus paper changes colour.

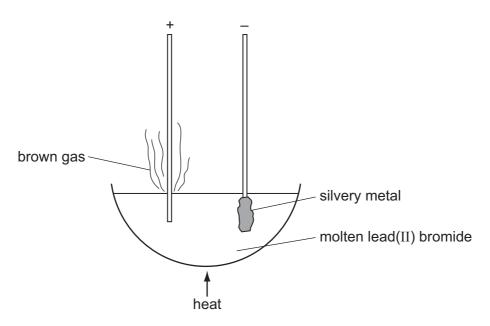
What are solution **X** and gas **Y**?

|   | solution <b>X</b>        | gas <b>Y</b> |  |  |
|---|--------------------------|--------------|--|--|
| Α | aqueous sodium hydroxide | ammonia      |  |  |
| В | aqueous sodium hydroxide | chlorine     |  |  |
| С | dilute sulfuric acid     | ammonia      |  |  |
| D | dilute sulfuric acid     | chlorine     |  |  |

| 4  |      | tudent tested a solution by adding aqueous sodium hydroxide. A precipitate was not see ause the reagent was added too quickly.  at could <b>not</b> have been present in the solution?  A $l^{3+}$ <b>B</b> Ca $^{2+}$ <b>C</b> NH <sub>4</sub> <sup>+</sup> <b>D</b> Zn <sup>2+</sup> ch molecule has the <b>largest</b> number of electrons involved in covalent bonds? |        |                    |                   |                         |        |                                  |
|----|------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------|--------------------|-------------------|-------------------------|--------|----------------------------------|
|    | Α    | 16 g                                                                                                                                                                                                                                                                                                                                                                      | В      | 32 g               | С                 | 64 g                    | D      | 70 g                             |
| 5  |      |                                                                                                                                                                                                                                                                                                                                                                           |        | •                  |                   | •                       | /drox  | ride. A precipitate was not seen |
|    | Wh   | at could <b>not</b> hav                                                                                                                                                                                                                                                                                                                                                   | e be   | en present in th   | e so              | lution?                 |        |                                  |
|    | Α    | $Al^{3+}$                                                                                                                                                                                                                                                                                                                                                                 | В      | Ca <sup>2+</sup>   | С                 | $NH_4^+$                | D      | Zn <sup>2+</sup>                 |
| 6  | Whi  | ich molecule has                                                                                                                                                                                                                                                                                                                                                          | s the  | largest numbe      | r of e            | electrons involve       | d in   | covalent bonds?                  |
|    | Α    | $C_2H_4$                                                                                                                                                                                                                                                                                                                                                                  | В      | CO <sub>2</sub>    | С                 | CH₃OH                   | D      | $N_2$                            |
| 7  | In w | hich of the follo                                                                                                                                                                                                                                                                                                                                                         | wing   | is there a lattice | e of <sub> </sub> | positive ions in a      | 'sea   | a of electrons'?                 |
|    | Α    | liquid potassiur                                                                                                                                                                                                                                                                                                                                                          | n chl  | loride             |                   |                         |        |                                  |
|    | В    | sand                                                                                                                                                                                                                                                                                                                                                                      |        |                    |                   |                         |        |                                  |
|    | С    | solid graphite                                                                                                                                                                                                                                                                                                                                                            |        |                    |                   |                         |        |                                  |
|    | D    | solid magnesiu                                                                                                                                                                                                                                                                                                                                                            | m      |                    |                   |                         |        |                                  |
| 8  | Whi  | ich statement ab                                                                                                                                                                                                                                                                                                                                                          | out    | both chlorine ato  | oms               | and chloride ion        | s is o | correct?                         |
|    | Α    | They are chem                                                                                                                                                                                                                                                                                                                                                             | ically | / identical.       |                   |                         |        |                                  |
|    | В    | They are isotop                                                                                                                                                                                                                                                                                                                                                           | es c   | of chlorine.       |                   |                         |        |                                  |
|    | С    | They have the                                                                                                                                                                                                                                                                                                                                                             | same   | e number of pro    | tons              |                         |        |                                  |
|    | D    | They have the                                                                                                                                                                                                                                                                                                                                                             | same   | e physical prope   | erties            | S.                      |        |                                  |
| 9  | Elei | ment $X$ has the $\epsilon$                                                                                                                                                                                                                                                                                                                                               | elect  | ronic structure 2  | 2,8,5             | . Element Y has         | the    | electronic structure 2,8,7.      |
|    | Wha  | at is the likely fo                                                                                                                                                                                                                                                                                                                                                       | rmul   | a of a compound    | d co              | ntaining only $X$ a     | ind \  | <b>/</b> ?                       |
|    | Α    | XY <sub>3</sub>                                                                                                                                                                                                                                                                                                                                                           | В      | $X_2Y_3$           | С                 | <i>X</i> <sub>3</sub> Y | D      | $X_3Y_2$                         |
| 10 | A co | ovalent bond is t                                                                                                                                                                                                                                                                                                                                                         | orm    | ed by              |                   |                         |        |                                  |
|    | Α    | electron sharing                                                                                                                                                                                                                                                                                                                                                          | a bet  | tween metals an    | ıd no             | on-metals.              |        |                                  |
|    | В    |                                                                                                                                                                                                                                                                                                                                                                           |        | tween non-meta     |                   |                         |        |                                  |
|    | С    |                                                                                                                                                                                                                                                                                                                                                                           |        | tween non-meta     |                   |                         |        |                                  |
|    | D    |                                                                                                                                                                                                                                                                                                                                                                           |        | m metals to non    |                   | tals.                   |        |                                  |
|    |      |                                                                                                                                                                                                                                                                                                                                                                           |        |                    |                   |                         |        |                                  |

11 The equation for the reaction between calcium carbonate and hydrochloric acid is shown.

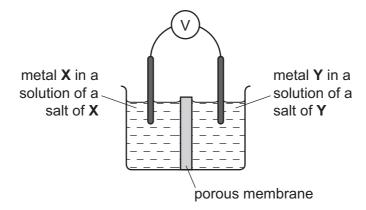
$$CaCO_3(s) + 2HCl(aq) \rightarrow CaCl_2(aq) + H_2O(I) + CO_2(g)$$


How many moles of calcium carbonate will give 24 cm<sup>3</sup> of carbon dioxide when reacted with an excess of the acid?

(Assume one mole of carbon dioxide occupies 24 dm<sup>3</sup>.)

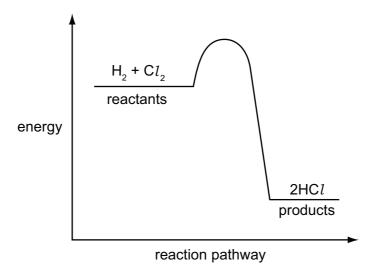
- A 1 mol
- **B** 0.1 mol
- **C** 0.01 mol
- **D** 0.001 mol
- **12** The empirical formula of a liquid compound is  $C_2H_4O$ .

To find the empirical formula, it is necessary to know the


- A density of the compound.
- **B** percentage composition of the compound.
- **C** relative molecular mass of the compound.
- **D** volume occupied by 1 mole of the compound.
- **13** The diagram shows the electrolysis of molten lead(II) bromide using inert electrodes.



What happens during this electrolysis?


- A Atoms change to ions.
- **B** Covalent bonds are broken.
- C lons change to atoms.
- **D** New compounds are formed.

14 Which pair of metals **X** and **Y** will produce the highest voltage when used as electrodes in a simple cell?



|   | metal <b>X</b> | metal <b>Y</b> |
|---|----------------|----------------|
| Α | copper         | silver         |
| В | magnesium      | silver         |
| С | magnesium      | zinc           |
| D | zinc           | copper         |

**15** The energy profile diagram for the reaction between hydrogen and chlorine is shown.

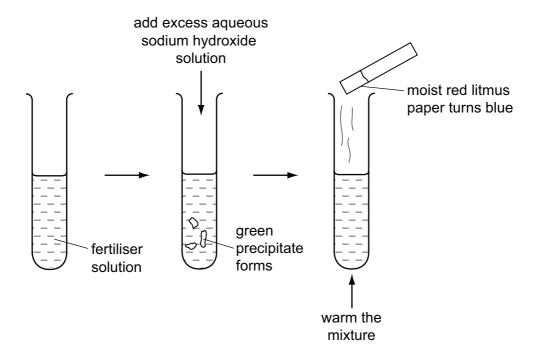


What information about this reaction does the diagram show?

|   | type of reaction      | sign of enthalpy change, $\Delta H$ |  |  |  |
|---|-----------------------|-------------------------------------|--|--|--|
| Α | endothermic           | negative                            |  |  |  |
| В | endothermic           | positive                            |  |  |  |
| С | C exothermic negative |                                     |  |  |  |
| D | D exothermic positive |                                     |  |  |  |

- **16** The following changes could be made to the conditions in the reaction between zinc and hydrochloric acid.
  - 1 increase in concentration of the acid
  - 2 increase in particle size of the zinc
  - 3 increase in pressure on the system
  - 4 increase in temperature of the system

Which pair of changes will increase the rate of reaction?


- **A** 1 and 2
- **B** 1 and 4
- **C** 2 and 3
- **D** 3 and 4
- 17 The equation shows what happens in a redox reaction between iron(II) chloride and chlorine gas.

$$2FeCl_2 + Cl_2 \rightarrow 2FeCl_3$$

Which equation describes the reduction process in this reaction?

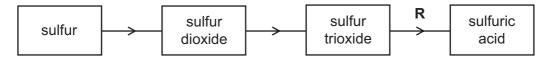
- A  $2Cl^- \rightarrow Cl_2 + 2e^-$
- **B**  $Cl_2 + 2e^- \rightarrow 2Cl^-$
- **C**  $Fe^{2+} \rightarrow Fe^{3+} + e^{-}$
- **D**  $Fe^{3+} + e^{-} \rightarrow Fe^{2+}$
- 18 Which acid and base react together to produce an **insoluble** salt?
  - A hydrochloric acid and sodium hydroxide
  - B nitric acid and calcium oxide
  - C sulfuric acid and barium hydroxide
  - D sulfuric acid and zinc oxide

19 A solution of fertiliser was tested as shown.



Which ions must be present in the fertiliser?

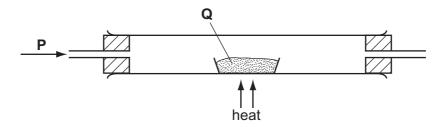
- **A**  $Fe^{2+}$  and  $SO_4^{2-}$
- **B**  $Fe^{3+}$  and  $NO_3^-$
- C NH<sub>4</sub><sup>+</sup> and Fe<sup>2+</sup>
- **D** NH<sub>4</sub><sup>+</sup> and NO<sub>3</sub><sup>-</sup>
- 20 Carbon and silicon are both in Group IV of the Periodic Table.


Which statement is correct for both carbon dioxide and silicon dioxide?

- A They are acidic oxides.
- **B** They are readily soluble in water.
- **C** They contain ionic bonds.
- **D** They have giant molecular structures.
- 21 Which calcium compound does **not** increase the pH of acidic soils?
  - A calcium carbonate
  - B calcium hydroxide
  - C calcium oxide
  - D calcium sulfate

- 22 Which deduction about the element astatine, At, can be made from its position in Group VII?
  - A It forms covalent compounds with sodium.
  - **B** It is a gas.
  - **C** It is displaced from aqueous potassium astatide, KAt, by chlorine.
  - **D** It is more reactive than iodine.
- 23 Which pair of properties are **both** correct for a typical transition element?

|   | property 1               | property 2                    |  |  |
|---|--------------------------|-------------------------------|--|--|
| Α | forms coloured compounds | soluble in water              |  |  |
| В | high density             | has variable oxidation states |  |  |
| С | low density              | high melting point            |  |  |
| D | low melting point        | can act as a catalyst         |  |  |


24 The diagram represents the manufacture of sulfuric acid by the Contact process.

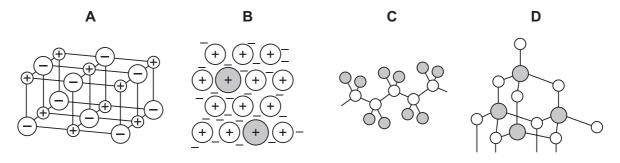


What is used in step **R**?

- A concentrated sulfuric acid followed by water
- **B** vanadium(V) oxide
- C water followed by concentrated sulfuric acid
- **D** water only
- 25 What happens when zinc foil is placed in an aqueous solution of copper(II) sulfate?
  - **A** Copper(II) ions are oxidised.
  - **B** There is no reaction.
  - C Zinc atoms are oxidised.
  - **D** Zinc sulfate is precipitated.

26 In the apparatus shown, gas P is passed over solid Q.




No reaction occurs if P and Q are

|   | Р        | Q               |  |  |
|---|----------|-----------------|--|--|
| Α | hydrogen | lead(II) oxide  |  |  |
| В | hydrogen | magnesium oxide |  |  |
| С | oxygen   | carbon          |  |  |
| D | oxygen   | sulfur          |  |  |

- 27 Which element can only be extracted from its ore using electrolysis?
  - **A** calcium
  - **B** copper
  - C lead
  - **D** silver
- 28 Scrap iron is often recycled.

Which reason for recycling is **not** correct?

- A It reduces the amount of pollution at the site of the ore extraction.
- **B** It reduces the amount of waste taken to landfill sites.
- **C** It reduces the need to collect the scrap iron.
- **D** It saves natural resources.
- 29 Which diagram represents the structure of an alloy?



**30** Aluminium is higher than copper in the reactivity series so the following displacement reaction should be feasible.

$$2Al(s) + 3CuSO_4(aq) \rightarrow Al_2(SO_4)_3(aq) + 3Cu(s)$$

The reaction does not take place at room temperature.

What is the reason for this?

- A Aluminium has an inert coating all over it.
- **B** The compound aluminium sulfate does not exist.
- **C** The reaction is exothermic.
- **D** The reaction needs to be warmed to take place.
- **31** The gases coming from a car's exhaust contain oxides of nitrogen.

How are these oxides formed?

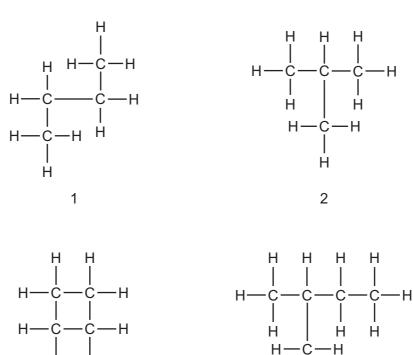
- A Nitrogen reacts with carbon dioxide.
- **B** Nitrogen reacts with carbon monoxide.
- C Nitrogen reacts with oxygen.
- **D** Nitrogen reacts with petrol.
- **32** When a volcano erupts, which gas is produced in significant amounts?
  - A carbon monoxide
  - **B** chlorofluorocarbons
  - **C** methane
  - **D** sulfur dioxide
- **33** Compound X is a hydrocarbon. It reacts with steam to form an alcohol.

Which type of compound is X and what would be its effect on bromine water?

|                                         | type of compound | mpound effect on bromine water |  |  |
|-----------------------------------------|------------------|--------------------------------|--|--|
| Α                                       | alkane           | turns from brown to colourless |  |  |
| В                                       | alkane           | turns from colourless to brown |  |  |
| C alkene turns from brown to colourless |                  | turns from brown to colourless |  |  |
| D                                       | alkene           | turns from colourless to brown |  |  |

**34** Useful fractions are obtained by the fractional distillation of petroleum.

Which fraction is matched by its use?


|   | fraction                        | n use                         |  |  |  |
|---|---------------------------------|-------------------------------|--|--|--|
| Α | bitumen                         | fuel in cars                  |  |  |  |
| В | lubricating oils                | for making waxes and polishes |  |  |  |
| С | paraffin (kerosene)             | for making roads              |  |  |  |
| D | petrol (gasolene) aircraft fuel |                               |  |  |  |

- 35 Which statement about ethanoic acid is correct?
  - A It contains three carbon atoms per molecule.
  - **B** It contains five hydrogen atoms per molecule.
  - **C** It is insoluble in water.
  - **D** It reacts with ethanol to form a sweet-smelling compound.
- **36** Which bond is present in both nylon and *Terylene*?
  - **A** C O
- **B** C = O
- **C** N C
- D N H
- 37 Compounds X and Y are both alkanes. Compound X has a higher boiling point than compound Y.

What could be the formulae of compounds X and Y?

|   | compound X                     | compound Y                     |
|---|--------------------------------|--------------------------------|
| Α | C <sub>8</sub> H <sub>16</sub> | C <sub>9</sub> H <sub>18</sub> |
| В | C <sub>8</sub> H <sub>18</sub> | $C_9H_{20}$                    |
| С | C <sub>9</sub> H <sub>18</sub> | C <sub>8</sub> H <sub>16</sub> |
| D | $C_9H_{20}$                    | C <sub>8</sub> H <sub>18</sub> |

**38** Four hydrocarbon structures are shown.



Which hydrocarbons are isomers of each other?

3

- **A** 1, 2 and 3
- **B** 1, 2 and 4
- **C** 1 and 2 only **D** 3 and 4

**39** With which substance will ethene react to form more than one product?

- A bromine
- В hydrogen
- C oxygen
- **D** steam

**40** When a compound X is reacted with sodium carbonate, carbon dioxide gas is evolved.

What could be the formula of compound X?

- **A**  $C_2H_5CO_2CH_3$  **B**  $C_3H_7CO_2H$  **C**  $CH_3CO_2C_2H_5$  **D**  $C_4H_9OH$

## **BLANK PAGE**

## **BLANK PAGE**

## **BLANK PAGE**

DATA SHEET
The Periodic Table of the Elements

|       | 0 | Heium      | 20 Neon 10 At Argon 18 Argon               | 84 <b>Kr</b><br>Krypton 36        | Xe Xenon 54                         | Radon<br>86                       |                                  | 175 <b>Lu</b> Lutetium 71            | L Sawrendiam                                      |
|-------|---|------------|--------------------------------------------|-----------------------------------|-------------------------------------|-----------------------------------|----------------------------------|--------------------------------------|---------------------------------------------------|
|       | ₹ |            | 19<br>Fluorine<br>9 35.5<br>C1<br>C1       | 80<br><b>Br</b><br>Bromine<br>35  | 127 <b>I</b> lodine 53              | At<br>Astatine<br>85              |                                  | 173<br><b>Yb</b><br>Ytterbium<br>70  | Nobelium<br>Nobelium                              |
|       | 5 |            | 16 Oxygen 8 32 Sulfur 16                   | Se Selenium 34                    | 128 <b>Te</b> Tellurium             | <b>Po</b> Polonium 84             |                                  | 169<br><b>Tm</b><br>Thulium<br>69    | Mendelevium                                       |
|       | > |            | 14 Nitrogen 7 31 Phosphorus 15             | 75 <b>AS</b> Arsenic 33           | 122<br><b>Sb</b><br>Antimony<br>51  | 209 <b>Bi</b> Bismuth             |                                  | 167<br><b>Er</b><br>Erbium<br>68     | Fm                                                |
|       | ≥ |            | 12 Carbon 6 S Silicon 14                   | 73 <b>Ge</b> Germanium            | Sn<br>Tin<br>50                     | 207 <b>Pb</b> Lead 82             |                                  | 165<br><b>Ho</b><br>Holmium<br>67    | Es                                                |
|       | = |            | 11<br>B Boron<br>5<br>27<br>A1<br>Auminium | 70 <b>Ga</b> Gallium 31           | 115 <b>I n</b> Indium               | 204 <b>T. 1</b> Thallium 81       |                                  | 162<br><b>Dy</b><br>Dysprosium<br>66 | Californium                                       |
|       |   |            |                                            | 65 <b>Zn</b> Zinc 30              | Cadmium 48                          | 201<br><b>Hg</b><br>Mercury<br>80 |                                  | 159 <b>Tb</b> Terbium 65             | <b>BK</b>                                         |
|       |   |            |                                            | 64<br>Copper<br>29                | 108 <b>Ag</b> Silver 47             | 197<br><b>Au</b><br>Gold          |                                  | 157<br><b>Gd</b><br>Gadolinium<br>64 | Cm                                                |
| Group |   |            |                                            | 59 <b>Nickel</b> Nickel           | 106 Pd Palladium 46                 | 195 <b>Pt</b> Platinum 78         |                                  | 152<br><b>Eu</b><br>Europium<br>63   | Am                                                |
| Ď     |   |            |                                            | 59<br><b>Co</b><br>Cobalt         | Rhodium 45                          | 192 <b>I r</b><br>Iridium<br>77   |                                  | 150<br><b>Sm</b><br>Samarium<br>62   | Pu                                                |
|       |   | T Hydrogen |                                            | 56<br>Iron                        | Ru<br>Ruthenium<br>44               | 190<br><b>Os</b><br>Osmium<br>76  |                                  | <b>Pm</b><br>Promethium<br>61        | Np                                                |
|       |   |            |                                            | Manganese                         | Tc<br>Technetium<br>43              | 186<br><b>Re</b><br>Rhenium<br>75 |                                  | 144 <b>Nd</b> Neodymium 60           | 238<br><b>C</b>                                   |
|       |   |            |                                            | 52<br><b>Cr</b><br>Chromium<br>24 | 96<br><b>Mo</b><br>Molybdenum<br>42 | 184<br><b>W</b><br>Tungsten<br>74 |                                  | Pr<br>Praseodymium<br>59             | Protectinium                                      |
|       |   |            |                                            | 51<br>V<br>Vanadium<br>23         | Niobium A1                          | 181 <b>Ta</b> Tantalum 73         |                                  | 140 <b>Ce</b> Cerium                 | 232<br><b>Th</b>                                  |
|       |   |            |                                            | 48 <b>Ti</b> Titanium 22          | 2r<br>Zirconium<br>40               | 178 <b>Hf</b> Hafnium 72          |                                  |                                      | nic mass<br>bol                                   |
|       |   |            |                                            | Scandium 21                       | 89 <b>×</b>                         | 139 <b>La</b> Lanthanum 57 *      | 227 <b>Ac</b> Actinium 89        | d series<br>series                   | a = relative atomic mass <b>X</b> = atomic symbol |
|       | = |            | Be Berylium 4  24  Magnesium 12            | 40 <b>Ca</b> Calcium              | Sr<br>Strontium<br>38               | 137 <b>Ba</b> Barium 56           | 226<br><b>Ra</b><br>Radium<br>88 | *58-71 Lanthanoid series             | a ×                                               |
|       | _ |            | 7   Lithium 3   23   Na   Sodium 11        | 39 <b>K</b> Potassium             | Rb Rubidium 37                      | 133<br><b>Cs</b><br>Caesium<br>55 | <b>Fr</b><br>Francium<br>87      | *58-71 L                             | Key                                               |

The volume of one mole of any gas is 24 dm<sup>3</sup> at room temperature and pressure (r.t.p.).

Permission to reproduce items where third-party owned material protected by copyright is included has been sought and cleared where possible. Every reasonable effort has been made by the publisher (UCLES) to trace copyright holders, but if any items requiring clearance have unwittingly been included, the publisher will be pleased to make amends at the earliest possible opportunity.

University of Cambridge International Examinations is part of the Cambridge Assessment Group. Cambridge Assessment is the brand name of University of Cambridge Local Examinations Syndicate (UCLES), which is itself a department of the University of Cambridge.