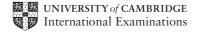
UNIVERSITY OF CAMBRIDGE INTERNATIONAL EXAMINATIONS GCE Ordinary Level

MARK SCHEME for the May/June 2012 question paper for the guidance of teachers

5070 CHEMISTRY

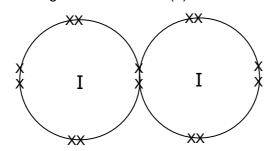
5070/21


Paper 2 (Theory), maximum raw mark 75

This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began, which would have considered the acceptability of alternative answers.

Mark schemes must be read in conjunction with the question papers and the report on the examination.

Cambridge will not enter into discussions or correspondence in connection with these mark schemes.


Cambridge is publishing the mark schemes for the May/June 2012 question papers for most IGCSE, GCE Advanced Level and Advanced Subsidiary Level syllabuses and some Ordinary Level syllabuses.

	Page 2		1	Mark Scheme: Teac		Syllabus	Paper
				GCE O LEVEL – M	ay/June 2012	5070	21
A 1	(a)	Am	monia	(1)			[1]
	(b)	Pro	pene	sulfur dioxide (1)			[1]
	(c)	Oxy	/gen (1)			[1]
	(d)	Ned	on (1)				[1]
	(e)	Nitr	ogen	sulfur dioxide (1)			[1]
	(f)	Chl	orine	1)			[1]
	(g)	Nitr	ogen	carbon monoxide (1)			[1]
							[Total: 7]
A2	(a)	(i)	SO ₂	1)			[1]
		(ii)		ratio sulfur : oxygen is 1.25 rical formula is SO ₃ (1)	: 3.75 (1)		[2]
	((iii)	Wate	r/steam (1)			[1]
	((iv)	Iron(II)/Fe ³⁺ (1)			[1]
	(b)	(i)	Iron(I) hydroxide			[1]
		(ii)		aq) + 2OH⁻(aq) → Fe(OH)₂(aced equation (1)	s)		
				ct state symbols – depende	ent on correct formulae	(1)	[2]
							[Total: 8]
А3	(a)			ectrons / no delocalised ele oonds / electrons cannot mo		ons / all electrons	are in [1]
	(b)	Allo Not	ow pa t atom	s gain (kinetic) energy (1) ticles move faster s gain energy e intermolecular forces / bre	ak attraction between n	nolecules (1)	
		lgn	ore w	eak forces between particles covalent bonds			[2]

Page 3	Mark Scheme: Teachers' version	Syllabus	Paper
	GCE O LEVEL - May/June 2012	5070	21

(c) Correct structure – ignore inner shells (1)

Allow all crosses or all dots

[1]

(d) (i)
$$At^{-}(1)$$
 [1]

(ii)	element	colour	state
	Cl_2		gas
	Br_2	orange	liquid
	I_2	grey/black	

Correct states (1)

Correct colour (1)

Allow red / brown for bromine [2]

(iii) Black solid/dark grey solid (1) [1]

- (e) (i) (colourless to) yellow solution/straw solution/brown solution/dark grey solid (1) [1]
 - (ii) $Cl_2 + 2I^- \rightarrow I_2 + 2Cl^-$ Ignore state symbols [1]
- (f) Astatine is less reactive than iodine / astatine is less oxidising that iodine / iodide is a better reducing agent than astatide (1)
 Ignore reference to reactivity series [1]

[Total: 11]

Electron configurations (1)

Numbers of protons (1)

Numbers of neutrons (1) [3]

(ii) Magnesium loses two electrons and oxygen gains two electrons/two electrons transferred from magnesium to oxygen (1) [1]

	Page 4		Mark Scheme: Teachers' version	Syllabus	Paper
	4		GCE O LEVEL – May/June 2012	5070	21
	(b)	Not inter Not coval large am hard to b break the Ignore la	ectrostatic) attractions between ions /many (ionic) be molecular forces alent bonds for the first mark ount of energy to separate the ions/needs lots of energy to separate the ions/needs lots of energy (ionic) bonds/high temperature needed to breat ionic lattice/bonds are strong (1) arge amount of energy to break forces forces of attraction between ions	nergy to break the	e (ionic) bonds/
	(c)	Filter rea Wash rea Air dry re	ny aqueous sulfate including dilute sulfuric acid (1) action mixture (1) sidue with water (1) asidue/put residue into oven (1) ave the residue to dry		[4]
					[Total: 10]
A 5	(a)	Copper,	nickel, iron and magnesium (1)		[1]
	(b)	Allow th			[2]
	(c)	(i) Exot	thermic (1)		[1]
			²⁺ + 2A <i>l</i> → 2A <i>l</i> ³⁺ + 3Cu ore state symbols		[1]
	(d)	Which do) layer of aluminium oxide (1) bes not flake off/acts as a protective barrier/which i water or air to reach surface of aluminium (1)	s impermeable to	water/does [2]
	(e)	Mass of	Mo = 10417 (1) A l = 562500 g/0.5625 tonnes (1) aswer to 2 sig figs up to calculator value		[2]
					[Total: 9]
В6	(a)		a_2 SO $_4$ /KC l /K $_2$ SO $_4$ /CaC l_2 /CaSO $_4$ /MgC l_2 /MgSO $_4$ (1aHCO $_3$ /KHCO $_3$ /Ca(HCO $_3$) $_2$ /Mg(HCO $_3$) $_2$)	[1]
	(b)	0.0276 (1)		[1]

Page 5	Mark Scheme: Teachers' version	Syllabus	Paper
	GCE O LEVEL – May/June 2012	5070	21

(c) Moles of Cl^{-} in $1 \text{ dm}^{3} = 0.535/\text{mass}$ in $25 \text{ cm}^{3} = 0.475 \text{ g}$ (1) Moles in $25 \text{ cm}^{3} = 0.0134$ (1) Mass of AgCl = 1.92 g (1) [3]

- (d) Desalination / reverse osmosis (1)
 Allow distillation [1]
- (e) (i) OH⁻ (aq) (1)
 pH = 7.9 indicates alkaline/pH above 7 is alkaline/this ion is present in all alkaline
 solutions (1)
 Allow seawater is alkaline/seawater has a pH above 7
 [2]
 - (ii) Add universal indicator/pH (indicator) paper (1)

 Allow use of pH indicator

 Idea of matching colour against a pH chart/idea that the colour indicates the pH (1) [2]

[Total: 10]

B7 (a) Any two from

Same general formula/members vary by a CH₂ group (1) Same functional group/similar chemical properties (1)

Not a group of elements

Allow have same reactions

gradation of physical properties (1) [1]

(b) Butanoic acid (1) **Allow** methylpropanoic acid

[1]

(c)

H H H

C C C C

H H H

(1)

Allow OH in the structure [1]

(d) $C_7H_{14}O_2$ (1) Allow $C_6H_{13}COOH$ [1]

(e) Boiling points all increase / boiling points shows a trend

And

melting point increase and decreases / melting point is irregular down the series / melting point does not show a trend / melting points fluctuate (1) [1]

			GCE O LEVEL – May/June 2012	5070	21
	(f)	•	v two from ong acid fully dissociates and weak acid partially dissocia	tes (1)	
		CH ₃	$l \rightarrow H^+ + Cl^-(1)$ $_3COOH = H^+ + CH_3COO^-(1)$ ore state symbols		
			ore incorrect equations		[2]
	(g)	Corr	$CO_3(s) + 2CH_3COOH(aq) \rightarrow Ca(CH_3COO)_2(aq) + H_2O(l)$ rect equation (1) rect state symbols – dependent on formula (1)	+ CO ₂ (g)	[2]
		COII	rect state symbols – dependent on formula (1)		[Total: 10]
В8	(a)	(i)	10 (1)		[1]
	(b)	Igno Not	olid ions cannot move/no free ions (1) ore electrons cannot move t electrons can move colution ions can move/free ions (1)		
			particles can move in solution but not in a solid		[2]
	(c)	anode equation involves oxidation since electrons are lost/hydroxide ion is oxidised because it loses electrons/oxygen is oxidised because its oxidation increases (1) Note Must be a clear link between the equation, gain and loss of electrons and oxidation and reduction. Ignore wrong oxidation numbers			
		cathode equation involves reduction since electrons are gained/water is reduced because it			
	(d)	•	Bond breaking takes in energy and bond forming releas Allow bond forming is exothermic and bond breaking is less energy is released than taken in (1)		[2]
		(ii)	Moles of oxygen = 104.2 (1)		
			Moles of water = 208.3 (1)		
			Mass of water = 3750 g (1)		[3]
					[Total: 10]
В9	(a)		sition of equilibrium moves to the right/shifts forward/shifaction favoured (1)	its towards the pro	oducts / forward

Mark Scheme: Teachers' version

Syllabus

Paper

[2]

Page 6

because the (forward) reaction is endothermic (1)

Page 7	Mark Scheme: Teachers' version	Syllabus	Paper
	GCE O LEVEL – May/June 2012	5070	21
volume	increases se particles are more crowded/more concentrated e/particles are closer together (1) ollisions per second/more chance of collision/mor	. ,	·
Allow Allows Allow	o from: ses rate of reaction (1) reduces the reaction time reaction to take place at a lower temperature/save reduces the activation energy es energy resources (1)	es energy (1)	[2]
` '	of hydrogen = 50 0000 (1) = 35 000 000 kJ (1)		[2]
High pı	rated fat (1) ressure/nickel catalyst (1) unsaturated oil/fats with a carbon-carbon double b	ond	[2]

[Total: 10]