MARK SCHEME for the May/June 2013 series

5070 CHEMISTRY

5070/21

Paper 2 (Theory), maximum raw mark 75

This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began, which would have considered the acceptability of alternative answers.

Mark schemes should be read in conjunction with the question paper and the Principal Examiner Report for Teachers.

Cambridge will not enter into discussions about these mark schemes.

Cambridge is publishing the mark schemes for the May/June 2013 series for most IGCSE, GCE Advanced Level and Advanced Subsidiary Level components and some Ordinary Level components.

	Ра	ge 2		Mark Scheme	Syllabus	Paper					
				GCE O LEVEL – May/June 2013	5070	21					
A 1	(a)	Iron	(II) h	ydroxide (1)		[1]					
	(b)	Buta	ane (1)		[1]					
	(c)	Pro	pene	(1)		[1]					
	(d)	Calcium carbonate (1)									
	(e)	Sulfur dioxide (1)									
	(f)	Sulf	uric a	acid / sodium chloride (1)		[1]					
						[Total: 6]					
A2	(a)	Any	valu	e in range 20–22 (1)		[1]					
	(b)	6H ₂	0 +	$6CO_2 \rightarrow C_6H_{12}O_6 + 6O_2(1)$		[1]					
	(c)	AN Use	Y TW of er	O FROM nzymes (1)							
		Chlo	oroph	yll / presence of chloroplasts (1)							
		Sun	light	(1) IGNORE just light / sun / sunshine							
		(Ide	ally)	20–40 °C (1)		[2]					
	(d)	(i)	Bono endo	d breaking absorbs energy and bond making releas othermic and bond making is exothermic (1)	es energy / bond	breaking is					
			More endo ener	e energy absorbed than released / less energy othermic energy change is greater than exothermic gy change is less than endothermic energy change	released than energy change / (1)	absorbed / exothermic [2]					
		(ii)	Prod	lucts level above and to the right of the reactants lev	vel (1)						
			Corr <i>E</i> a) f	ect energy hump drawn and near vertical arrow la rom reactant level to energy maximum (1)	abelled activation	energy (or					
			Corr	ect labelled enthalpy change with near vertical arrow	w pointing upward	ds (1) [3]					
						[Total: 9]					

	Page 3		Mark Scheme	Syllabus	Paper
			GCE O LEVEL – May/June 20	5070	21
A3	(a)	(i) 2	$KOH + H_2SO_4 \rightarrow K_2SO_4 + 2H_2O (1)$		[1]
		(ii) 2	4 cm ³ (of potassium hydroxide neutralises	acid) (1)	[1]
		(iii) M M C	loles of KOH = $\frac{24}{1000} \times 0.150 / 0.0036$ (1) loles of H ₂ SO ₄ = $\frac{0.0036}{2} / 0.0018$ (1) oncentration = $\frac{0.0018}{0.025}$ = 0.072 (mol dm ⁻³)	(1)	[3]
	(b)	Use o Add o	f nitric acid (1) xcess base to acid (and warm) (1)		
		Filter	(to remove excess base) (1)		
		Evap cool (prate to point of crystallisation / leave in v 1)	varm place / heat then allow	v solution to [4]
					[Total: 9]
A4	(a)	40 (1			[1]
	(b)	Same	number of protons and electrons / becaus	e it has 12 protons and 12 el	ectrons (1)
		Proto	ns are positive and electrons are negative	/ protons are +1 and electron	s are –1 (1) [2]
	(c)	C and	D		[1]
	(d)	2- / -	2 (1)		[1]
	(e)	F and	G (1)		[1]
					[I Otal: 6]

Page 4	Mark Scheme	Syllabus	Paper
	GCE O LEVEL – May/June 2013	5070	21

A5 (a)

	Ν	н	Cr	0
Mole ratio	11.1 14	$\frac{3.2}{1}$ /	<u>41.3</u> /	$\frac{44.4}{16}$ /
	0.793	3.2	0.794	2.78
Simplified ratio	0.793 0.793 / 1	3.2 0.793 / 4	0.794 0.793 / 1	2.78 0.793 / 3.5
×2	2	8	2	7

Mole ratio line (1) Simplified ratio line (1) Idea of the \times 2 (1)

[3]

[1]

- **(b)** Chromium (1)
- (c) X is an oxidising agent (1)

because oxidation number of iodine increases / iodide loses electrons / X gains electrons / oxidation number of Cr decreases (1) [2]

- (d) (i) $NH_4^+(1)$ [1]
 - (ii) $\operatorname{Cr}_2 \operatorname{O}_7^{2-}(1)$ [1]
- (e) Nitrogen (1)

[1]

[Total: 9]

	Pa	ge 5		Mark Scheme	Syllabus	Paper				
				GCE O LEVEL – May/June 2013	5070	21				
A 6	(a)	 (i) Correct 'dot-and-cross' diagram with one pair of bonding electrons between C Cl, four non-bonding electrons on O and six non-bonding electrons on each Cl 								
		(ii)	ANY Simp	TWO FROM ble molecular structure / small molecule (1)						
			Wea	k intermolecular forces have to be broken (1)						
			Little over	energy needed to break intermolecular force / int come (1)	termolecular force	e is easy to [2]				
	(b)	K⁺ 2,	,8,8 ((1)						
		O ²⁻ 2	2,8 (′	1)						
		Alte	rnati	vely						
		ALL	ow	correct charge on ion (1) and correct electronic stru	cture (1)	[2]				
	(c)	H₂O	+ C	$Cl_2O_7 \rightarrow 2HClO_4(1)$		[1]				
						[Total: 6]				
B7	(a)	ANY Diss	TW olves	О FROM s (1)						
		Blue	/ gre	een solution (1)						
		Fizze	es/b	oubbles / effervescence (1)		[2]				
	(b)	CuC	O ₃ .C	$cu(OH)_2 + 4HCl \rightarrow 2CuCl_2 + CO_2 + 3H_2O(1)$						
		Corr	ect fo	ormulae (1)						
		Bala	ncin	g (1)		[2]				
	(c)	Mole	es of	CO_2 / moles of CO_3^{2-} = 0.004 (1)						
		<i>M</i> _r of	f CO	3 ²⁻ = 60 (1)						

Mass of
$$CO_3^{2-} = 0.24 \text{ g}(1)$$
 [3]

Pa	age (5			I	Mark S	Scl	neme		Syllabu	IS	Paper	
				GC	E O LE	EVEL -	- N	lay/June 2013		5070		21	
(d)) (i)	CuC	O₃.Cu	(OH) <u>;</u>	₂ + C →	2Cu -	+ 2	CO ₂ + H ₂ O					
		Corr	ect for	mula	e (1)								
		Bala	ncing	(1)									[2]
	(ii)	ANY less	ONE energ	FRO y use	M: d (in re	cycling	g th	nan in extracting	g from th	e ore) (1)			
		redu eyes	ces p ore / l	ollutic ess la	on / rec andfill /	duces no lan	wa dfil	aste / reduces I (1)	trash /	less of an	eyeso	re / not an	
		(less agric	minir ulture	ng) sa (1)	aves m	ore la	nd	for other uses	/ (less	mining) sav	ves lar	nd for more	[1]
												[Total:	10]
B8 (a)	Gro	oup of	subst	ances	s with a	gener	ral	formula / formu	lae vary	by $CH_2(1)$			
	Ha gro	ve sir oup (1)	nilar r	eactio	ons / h	ave si	imi	lar chemical pr	operties	/ have the	e same	e functional	[2]
(b)	Pro	pano	c acid	(1)									[1]
(c)) C _n l	$H_{2n+1}C$	O₂H /	C_nH_{2i}	_{۱+1} COO	9H (1)							[1]
(d)) Me deo	lting p crease	oint c s but	loes r boilin	not hav g point	e a tre only ir	enc	l but boiling po eases (1)	int does	/ melting p	oint in	crease and	[1]
(e)) Eth	ny l but	anoat	e (1)									
		H	H	H	0 	H 		H					

[2]

(f) (i) $C_{15}H_{31}COOH \Rightarrow C_{15}H_{31}COO^{-} + H^{+}(1)$

Only partially dissociates / forms an equilibrium mixture / does not completely ionise (1) [2]

(ii) C₁₅H₃₁COONa (1) [1]

[Total: 10]

Page 7				Mark Scheme Syllabus Pa						
				GCE O LEVEL – May/June 2013	5070	21				
B9	(a)	(i)	Rea parti	ction is faster because particles are moving faste cles have more energy (1)	er / rate increas	es because				
			Ther activ collis	re are more successful collisions / more particle ration energy / more effective collisions / more fruitf sions more chance of successful collisions (1)	es have energy [;] ul collisions / mo	above the re energetic	[2]			
		(ii)	ii) Position of equilibrium shifts to the left (1)							
			Because the reaction is exothermic (1) [2							
	(b)	(i)	(i) Reaction is slower because the particles are further apart / rate decreases because the particles are less crowded (1)							
			Fewer collisions per second / particles collide less often / lower collision frequency (1)							
		(ii)	(ii) Position of equilibrium shifts to the left (1)							
			More	e moles on the reactant side / fewer moles on the pr	roduct side (1)		[2]			
	(c)	450	kJ (1)			[1]			
	(d)	Low	/ers tl	he activation energy / gives (alternative) route with I	ower energy (1)		[1]			
						[Total:	10]			
B10)(a)	(i)	Ag⁺	+ $e^- \rightarrow Ag(1)$			[1]			
		(ii)	Elec	trons are gained (1)			[1]			
	(b)	Ten	npera	ture does not change the mass (1)						
		Mas	ss is p	proportional to the time / doubling time doubles mas	s (1)					
		Mas	ss is p	proportional to the current / doubling current doubles	s mass (1)					
		Cor	ncenti	ration does not change the mass (1)			[4]			
	(c)	lons	s canı	not move in a solid / ions are in a fixed position in a	solid (1)					
		lons	s can	move in a solution (1)			[2]			

Page 8	Mark Scheme	Syllabus	Paper
	GCE O LEVEL – May/June 2013	5070	21
			·

(d) Ag⁺(aq) + Cl⁻(aq) → AgCl(s)
 Correct formulae and balancing (1)
 Correct state symbols – dependent on correct formulae (1)

[2]

[Total: 10]