MARK SCHEME for the May/June 2013 series

5070 CHEMISTRY

5070/22

Paper 2 (Theory), maximum raw mark 75

This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began, which would have considered the acceptability of alternative answers.

Mark schemes should be read in conjunction with the question paper and the Principal Examiner Report for Teachers.

Cambridge will not enter into discussions about these mark schemes.

Cambridge is publishing the mark schemes for the May/June 2013 series for most IGCSE, GCE Advanced Level and Advanced Subsidiary Level components and some Ordinary Level components.

	Page 2		Mark Scheme	Syllabus	Paper
			GCE O LEVEL – May/June 2013	5070	22
A1	(a)	sulfur			[1]
	(b)	iron			[1]
	(c)	calcium /	' iron / copper / zinc		[1]
	(d)	carbon			[1]
	(e)	barium			[1]
	(f)	lithium /	calcium / barium		[1]
					[Total: 6]

- A2 (a) carbon dioxide being produced / greenhouse gas emissions / fossil fuels will run out / fossil fuels non-renewable / global warming / acid rain (1) [1]
 - (b) $C_6H_{12}O_6 + 6O_2 \rightarrow 6CO_2 + 6H_2O$ (1) ALLOW: correct multiples IGNORE: state symbols
 - (c) (i) Bond breaking absorbs energy and bond making releases energy / bond breaking is endothermic and bond making is exothermic (1)

More energy is released than absorbed / less energy absorbed than released / endothermic energy change is less than the exothermic energy change / exothermic change greater than endothermic change (1) [2]

(ii) Product level below and to the right of the reactant level and labelled product or $(6)H_2O / (6)CO_2 (1)$

Correct energy hump drawn and near vertical arrow labelled activation energy (or E_a) from reactant level to energy maximum (1)

Correct labelled enthalpy change with near vertical arrow pointing downwards (1) [3]

[Total: 7]

[1]

<u> </u>	age 3		Mark Scheme	Syllabus	Paper		
		22					
3 (a)	Aluminium has 3 valence electrons and iodine and bromine have 7 / Al has 3 outer elect and iodine and bromine have 7 (1)						
	Alu	miniur	m loses electrons and iodine / bromine gain elect	tron(s) (1)	[1		
(b)	In a	solid,	, particles are arranged regularly and in liquid pa	irticles are irregularly	varranged (1)		
		olid pa	articles are only vibrating and in liquid they are n	noving (or sliding ove	er each other)		
	(1) AL I	LOW:	no movement of particles in solid and moving in	liquid	[2		
(c)			lot-and-cross diagram with one pair of bonding el ding electrons on each atom (1)	lectrons between I a	nd Br and six [
(d)		mine ourles:	(water) decolourised / bromine goes colourless b s (1)	promine goes from o	range to [
(e)	(i)	Low	density		[
	(ii)	It has	s an oxide layer / aluminium oxide is on the surfa	ice (1)			
		acids	er is impermeable to water / layer is impermeable s / layer is (fairly) resistant to alkalis / layer is unre r adheres to the surface / layer is non-porous (1)				
					[Total: 9		
4 (a)	Fra	ctiona	al distillation / fractionation (1)				

(b) TWO marks for any suitable equation correctly balanced showing alkene(s) as product e.g. $\begin{array}{c}C_{16}H_{34}\rightarrow C_8H_{18}+C_8H_{16}\\C_{16}H_{34}\rightarrow C_8H_{18}+2C_4H_8\\C_{16}H_{34}\rightarrow C_8H_{18}+4C_2H_4\\C_{16}H_{34}\rightarrow C_8H_{18}+C_4H_8+2C_2H_4\end{array}$

(Any equation showing C_8H_{18} as product and $C_{16}H_{34}$ as reactant gains one mark.) [2]

- (c) Correct section of polymer chain showing 1 or more repeating units and continuation bonds (2 marks) e.g.
 - H H | | - C - C -| | H CH₃

1 mark if structure correct but no continuation bonds

Page 4	Mark Scheme	Syllabus	Paper
	GCE O LEVEL – May/June 2013	5070	22

(d) Ethene and steam / C_2H_4 + $H_2O(g)$ (1)

High temperature / heat **and** catalyst / correct named catalyst e.g. phosphoric acid / acid (1) [2]

[Total:8]

A5	(a)	Dividing % by mass by atomic mass N = 12.0/14 H = 3.4/1 O = 41.0/16 V = 43.6 /51 or correct ratios arising from this N = 0.857 H = 3.4 O = 2.56 V = 0.855 (1 mark)					
		Dividing correctly by smallest to give correct ratio: $N = \frac{0.857}{0.855}$ H = $\frac{3.4}{0.855}$ O = $\frac{2.56}{0.855}$ V = $\frac{0.855}{0.855}$ 1 4 3 1 (1 mark)					
		OR					
		$H = \underbrace{4}_{117} \times 100 O = \underbrace{48}_{117} \times 100 N = \underbrace{14}_{117} \times 100 V = \underbrace{51}_{117} \times 100$					
		= 3.4% $= 41%$ $= 12%$ $= 43.6%$ (2 marks)					
		(IF: 2 marks not obtained, 1 mark for 4, 48, 14 and 51)	[2]				
	(b)	(Solution is) coloured / not colourless	[1]				
	(c)	NH4 ⁺ (1)					
		VO ₃ ⁻ (1)	[2]				
	(d)	(X is an) oxidising agent / oxidant (1)					
		the oxidation number of iodine increases / iodide loses electrons / X gains electrons (1)	[2]				
	(e)	Ammonia (1) ALLOW: NH ₃	[1]				

[Total: 8]

	Page 5				Syllabus	Paper
				GCE O LEVEL – May/June 2013	5070	22
A 6	(a)) Iron los		s electrons (1)		[1]
	(b)	Mole	es Fe			
				uSO₄ / Cu ²⁺ ions / Cu < 25 / 1000 OR 0.0025 mol (1)		
		NOT	(bec 「 E: a / Cu	ause there are more moles) (1) nswer dependent on a calculation showing moles o	of Fe and moles of	CuSO ₄ / Cu ²⁺ [3]
	(c)	Blue	e solu	ution becomes (pale) green (1)		
		ÂLL	OW:	s coated with) pink solid / pink solid formed (1) brown solid in place of pink solid		[0]
		NOI	I E: b	oth solid and colour required for mark		[2]
	(d)	There is a reaction because copper is more reactive than silver / there is a reasilver is less reactive than copper				ction because
				oth reaction and reason required		[1]
						[Total: 7]
B7	(a)	label f		method of collecting and measuring gas connected the measuring vessel e.g. gas syringe / upturned bu ng cylinder over water with tube connected to flask (urette over water /	
		App	aratu	is gas tight and workable (1)		[2]
	(b)	(i)	Mg(0	$OH)_2 + 2HCl \rightarrow MgCl_2 + 2H_2O(1)$		
			CaC	$O_3 + 2HCl \rightarrow CaCl_2 + CO_2 + H_2O (1)$		[2]
		(ii) Volu		me of $CO_2 = 96 (cm^3) (1)$		
			Mole	es CO ₂ = 0.004 / 4 × 10 ⁻³ (mol) (1)		[2]
		(iii)	<i>M</i> _r C	aCO ₃ = 100 (1)		
			(0.00	04 × 100) = 0.40 (g) / 0.4 (g) (1)		[2]

Р	age 6	Mark Scheme	Syllabus	Paper
		GCE O LEVEL – May/June 2013	5070	22
(c)	crowdeo	n faster because particles are closer / rate increases I / more particles in a given volume (1) mark cannot be scored if there is no mention of parti HC <i>l</i>		
		llisions per second / more frequent collisions / partic of collisions (1)	les collide more o	ften / more [2]
				[Total: 10]
B8 (a) OH / hyd	droxy(l) (1)		[1]
(b) Propanc	ol / propan-1-ol / propan-2-ol (1)		[1]
(c)		I _{2n+1} OH (1) ₋OW: C _n H _{2n+2} O		[1]
	(ii) C ₁₀ l ALI	H ₂₂ O (1) _OW: C ₁₀ H ₂₁ OH		[1]
(d		point does not have a trend (down the series) but de es then decreases but density increases (1)	ensity does / melti	ng point
	NOTE: 1	here must be reference to both density and melting	point	[1]
(e)) Buty <u>I</u> etl	nanoate (1)		
	Correct	structure showing all atoms and bonds (1)		
	H H – C –	О Н Н Н Н -C-O-C-C-C-C-H H Н Н Н		
	 H	 н н н н		[2]
(f)		um dichromate(VI) / potassium dichromate / Cr ₂ O ₇ ^{2–} /: potassium permanganate / potassium manganate(
		heat / distil / boil / reflux with an acid (1) both acid and heat required for the mark		[2]
(g) Any twc carbon,	of: carbon monoxide, water		[1]
				[Total: 10]

Page 7		,	Mark Scheme	Syllabus	Paper			
		U		GCE O LEVEL – May/June 2013	5070	22		
B9	39 (a) (i) (Reaction is) slower because particles are moving slower / rate decreases particles have less energy (1)					s because		
			There are fewer successful collisions / fewer particles have energy greater than activation energy / less chance of successful collisions / less effective collisions / les fruitful collisions / less energy collisions(1)					
		(ii)	 (ii) (Goes to) left (1) ALLOW: reaction goes to the left / greater concentration of reactants / lower concentration of products / more methane and water / reactant side is favoured 					
			ÀLL	cause) the reaction is endothermic OW: the reaction shifts to the exothermic side / the ases heat (1)	reaction shifts to t	the side which [2]		
	(b)	ALI	LOW:	left (1) reaction goes to the left / greater concentration of r / more methane and water / reactant side is favour		concentration of		
	(Because) there are fewer moles on reactant side / more moles on product side / fewer moles of methane and water / more moles of hydrogen and carbon monoxide (1)							
	(c)	(i)	Non	e / does not change it / nothing / no effect (1)		[1]		
		(ii)	Low	ers the activation energy (1)		[1]		
	(d)	(Mc	oles o	f) CO = (560 / 28) = 20 (mol) (1)				
		Ene	ergy =	: (210 × 20) = 4200 (kJ) (1)		[2]		
	[Total:10							
B10)(a)	(i)	Mg²⁺	⁺ and O ²⁻ (1)		[1]		
		(ii) Stronger attraction between the ions / stronger forces between the ions / stronger ionic bonds / higher charges / stronger electrostatic attractions / stronger electrostatic forces /						
		smaller ions (1) ALLOW: its ionic bonding is stronger [1]						
	(b)	(i)		00°C it is solid so ions cannot move / at 600°C ions E: reference needed to solid as well as lack of mov		on in a solid (1)		

At 1000 °C it is molten/ liquid so ions can move / at 1000 °C it is molten/ liquid so ions are mobile / At 1000 °C it is molten/ liquid because the ions are free (1) **NOTE:** reference needed to temperature, liquid/ solid as well as movement of ions [2]

(ii) $2Cl^- \rightarrow Cl_2 + 2e^- / 2Cl^- - 2e^- \rightarrow Cl_2$ ALLOW: multiples and $Cl^- \rightarrow \frac{1}{2}Cl_2 + e^-$ [1]

Page 8	Mark Scheme	Syllabus	Paper
	GCE O LEVEL – May/June 2013	5070	22
C C	$g^{\dagger}(aq) + C\Gamma(aq) \rightarrow AgCl(s)$ orrect formulae and balance (1) orrect state symbols for Ag^{\dagger} , $C\Gamma$ and $AgCl$ ependent on the correct formulae (1)		[2]
(ii) <i>M</i>	^r AgC <i>l</i> = 143.5 and <i>M</i> _r NaC <i>l</i> = 58.5 (1)		
	oles AgC <i>l</i> = (0.232/ 143.5) = 0.00162 (1) LLOW: ecf from incorrect <i>M</i> _r		
М	ass of NaCl = (0.00162 × 58.5) = 0.0948(g) (1)		[3]
			[Total: 10]