MARK SCHEME for the May/June 2014 series

5070 CHEMISTRY

5070/21

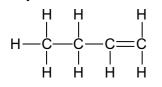
Paper 2 (Theory), maximum raw mark 75

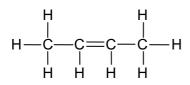
This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began, which would have considered the acceptability of alternative answers.

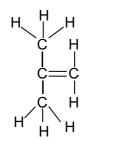
Mark schemes should be read in conjunction with the question paper and the Principal Examiner Report for Teachers.

Cambridge will not enter into discussions about these mark schemes.

Cambridge is publishing the mark schemes for the May/June 2014 series for most IGCSE, GCE Advanced Level and Advanced Subsidiary Level components and some Ordinary Level components.


	Page 2)	Mark Scheme	Syllabus	Paper
				GCE O LEVEL – May/June 2014	5070	21
A1	(a)	J / I	NH_4^+ (aq) + $OH^{-}(aq) \rightarrow H_2O(I) + NH_3(g)$		[1]
	(b)	B /	Ba ²⁺ (aq) + $SO_4^{2-}(aq) \rightarrow BaSO_4(s)$		[1]
	(c)	E /	Cu²+(aq) + 2e ⁻ \rightarrow Cu(s)		[1]
	(d)	H /	H⁺(ao	$q)$ + OH ⁻ (aq) \rightarrow H ₂ O(I)		[1]
	(e)	K /	4OH⁻	$T(aq) \rightarrow O_2(g) + 2H_2O(I) + 4e^-$		[1]
						[Total: 5]
A2	(a)	2H ₂	<u>s</u> +	$3O_2 \rightarrow 2H_2O + 2SO_2(1)$		[1]
	(b)			oxide causes acid rain/sulfur dioxide linked to effec dioxide is a greenhouse gas/carbon dioxide linked t) [2]
	(c)	(i)	999	(1)		[1]
		(ii)	1 (1))		[1]
		(iii)	$\frac{1}{100}$	$\frac{-}{0} \times 100$ (1)		[2]
			0.			[~]
	(d)	(i)		me decreases (1) Iller space between the particles/particles are close	er together (1)	[2]
		(ii)		me increases (1) that particles have more energy and spread out (1)	[2]
						[Total: 11]
A 3	(a)		-	inc carbonate is cold so a low speed of reaction/a t enough to decompose (1)	it start zinc carbona	ate [1]
	(b)			e when the line is horizontal (1) explanation written on the graph		[1]


	Page 3		Mark Scheme	Syllabus	Paper
			GCE O LEVEL – May/June 2014	5070	21
	(c)	Graph starts at the origin and ends at the same volume (1) Graph has same shape as original but always to the left and does not go above the final volume (1) Reaction is faster (1) Particles have more energy/more successful collisions/more energetic collisions/more fruitful collisions/more effective collisions/more particles have energy above the activation energy (1)			
	(d)	MgCO ₃ any time greater than 70 and less than 360 and PbCO ₃ any time less than 60 (1) Idea that the time is linked to position of metal in the reactivity series e.g. the more reactive the metal the longer the time (1)			
					[Total: 8]
A4	(a)	Positive of Negative	electrode: $2O^{2-} \rightarrow O_2 + 4e^-$ (1) electrode: $Al^{3+} + 3e^- \rightarrow Al$ (1)		[2]
	(b)	The laye	ver of aluminium oxide on the surface (1) or stops water getting to the surface/layer will not the layer will not flake off/layer is non-porous/layer		[2]
	(c)	easily/m	um is more reactive (than iron)/magnesium agnesium is above iron in the reactivity series (1) um reacts instead of iron (1)	is oxidised more	[2]
	(d)	Use of ex	xcess aluminium oxide (1)		
	(9)	Use of su	ulfuric acid (1)		
			cture (to get filtrate) (1) te some of solution and allow to crystallise/leav e (1)	ve in warm place to	[4]
					[Total: 10]
A5	(a)	Award 1	dot-and-cross' diagram (2) mark for two shared pairs of electrons between ydrogen bond shown as a shared pair of electrons	carbon atoms/each	[2]
	(b)	C_2H_4 +	$H_2O \rightarrow C_2H_5OH(1)$		
		High pres	from: perature/200–400 °C / heat (1) ssure/30–100 atmospheres (1) /(concentrated) phosphoric acid (1)		[3]
					[Total: 5]


Pa	age 4	Mark Scheme	Syllabus	Paper	
		GCE O LEVEL – May/June 2014	5070	21	
A6 A	copper(I	i) carbonate (1)			
В	carbon d	ioxide (1)			
С	copper(II) sulfate (1)				
D	copper(II) hydroxide (1)				
E	magnesi	um sulfate (1)			
F	copper (1)		[6]	
				[Total: 6]	

B7 (a) Has only single bonds/has no double bonds (1) [1]

- **(b)** $CH_2(1)$ [1]
- (c) Any one of

(1)

[1]

Page 5	Mark Scheme	Syllabus	Paper
	GCE O LEVEL – May/June 2014	5070	21
Co	$H_8 + 6O_2 \rightarrow 4CO_2 + 4H_2O$ rrect reactants and products (1) lancing (1)		[:
	les of C ₄ H ₈ = $\frac{600}{24}$ = 25 (1) (mark for working or cornergy = 67550 (1)	rect answer)	[]
Bo	nd breaking absorbs energy/bond breaking is endo nd making releases energy/bond making is exother ore energy is released than absorbed (1)		[;
			-
			[Total: 1
	ot completely discosists (norticly, issists (issists	to forme on onville	
mixture	not completely dissociate/partially ionises/ionises	to form an equilibri	lum
CH₃CO	$P_2H \rightleftharpoons CH_3CO_2^- + H^+/CH_3CH_2CH_2CO_2H \rightleftharpoons CH_3CH_2CH_2CO_2H$	$H_2CH_2CO_2^- + H^+$ (2)	1) [
(b) Hydrog	en (1) ith a lighted splint (1)		r
rops w			[
(c) Mg(CH	₃ CH ₂ CH ₂ CO ₂) ₂ /(CH ₃ CH ₂ CH ₂ CO ₂) ₂ Mg (1)		[
(d)			
H	о н н -С-О-Сн 		
H—C·	— С — О <u>— С</u> — С — Н		
Н	пп		
	(1)		

(e) Moles of NaOH = $0.0232 \times 0.1 = 0.00232$ (1) (mark for working or correct answer) Moles of acid = moles of alkali = 0.00232 (1) $M_r = 74.1$ (1) CH₃CH₂CO₂H/propanoic acid/propionic acid (1)

[Total: 10]

[1]

[4]

[2]

- B9 (a) Reaction is faster because the particles are closer together/because the particles are more crowded/more particles per unit volume (1) more collisions per second/collisions more often/higher collision frequency (1) [2]
 (b) Desition of aquilibrium shifts to the left (1)
 - (b) Position of equilibrium shifts to the left (1)
 Because the reaction is exothermic/because heat is released (in the forward reaction) (1)

Page 6		Mark Scheme	Syllabus	Paper
		GCE O LEVEL – May/June 2014	5070	21
(c) (i)	Mole	es of $CO_2 = \frac{220}{44} = 5$ (1) (mark for working or correct	t answer)	
	Mas	s of methane = 80 (1)		[2]
(ii)	57.5	(1)		[1]
(d) (i)	No e	ffect/does not change (1)		[1]
(ii)		ed increases (1) vation energy is lowered/reaction follows a different	pathway (1)	[2]
				[Total: 10]

B10(a) (i)

symbol	number of protons	number of electrons	number of neutrons
²²³ ₈₇ Fr	87	87	136
²²⁵ ₈₇ Fr	87	87	138

Correct symbol (1) Correct numbers of electrons (1)

(ii)
$$2Fr + 2H_2O \rightarrow 2FrOH + H_2(1)$$

(c) (i) Francium atom loses one electron to make a francium ion (1)
 Oxygen atom gains two electrons to make an oxide ion (1)
 [2]

(ii) Any two from

- High melting point (1) Does not conduct electricity as a solid (1) Conducts electricity as a molten liquid (1) Soluble in water (1)
- (d) Positive ions in regular layers (2 layers is the minimum required in a diagram) (1) Electrons shown interspersed between the particles shown (1)

Note: Marks can be awarded from correct description in writing or from a labelled diagram. Electrons can move/delocalised electrons/free electrons (1) [3]

[Total: 10]

[2]

[1]

[2]