MARK SCHEME for the May/June 2014 series

5070 CHEMISTRY

5070/22

Paper 2 (Theory), maximum raw mark 75

This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began, which would have considered the acceptability of alternative answers.

Mark schemes should be read in conjunction with the question paper and the Principal Examiner Report for Teachers.

Cambridge will not enter into discussions about these mark schemes.

Cambridge is publishing the mark schemes for the May/June 2014 series for most IGCSE, GCE Advanced Level and Advanced Subsidiary Level components and some Ordinary Level components.

Page 2			Mark Scheme	Syllabus	Paper
			GCE O LEVEL – May/June 2014	5070	22
A 1	ALL	ow	<i>I</i> : name but correct chemical formulae take precedenc	е	
	(a)	O ₂	(1)		[1]
	(b)	CH,	₄ (1)		[1]
	(c)	сс	<i>l</i> F ₃ (1)		[1]
	(d)	H ₂ ((1)		[1]
					[Total: 4]
A2	(a)	28.2	2 (1) ALLOW: 28		[1]
	(b)	(i)	$OH^- + H^+ \rightarrow H_2O$ (1) IGNORE: state symbols		[1]
		(ii)	Ammonia formed (1)		
			(Ammonia) is a gas / (ammonia) escapes into air / (a soil (1)	ammonia) escapes fi	rom
			NOTE: 2nd marking point dependent on 1st marking	point being correct.	[2]
	(c)	(i)	Mol of $H_3PO_4 = 1.25 \times \frac{25}{1000} = 0.03125$ (1) (mark for w	vorking or correct ans	swer)
			Moles of ammonia = $0.03125 \times 3 = 0.09375$ (1) (mark ALLOW: answer from 1st marking point $\times 3$	for working or corre	ct answer)
			Concentration of ammonia = 2.07 (1)		
			ALLOW: $\frac{\text{answer from second marking point}}{0.0453}$ with cor	rectly evaluated ans	wer [3]
		(ii)	Mass = 0.03125×149 (1) NOTE: Mark for the working out, not the answer.		[1]
	((iii)	62.9 (1)		[1]
					[Total: 9]

	Page 3			Mark Scheme	Syllabus	Paper		
				GCE O LEVEL – May/June 2014	5070	22		
A3	(a)	Amide / peptide (1)						
	(b)	•		evlar (1) polyamide		[1		
	(c)	ALL	OW:	ography paper dipped into the solvent (1) chromatography paper just touching solvent (there the solvent and the bottom of the paper)	e should be no sp	pace		
				nixture on paper above the level of the solvent labe amino acid / amino acids / spot of amino acid / dro		e.g.		
		Use of a locating agent to view the spots / amino acids / use of ninhydrin to vi spots / amino acids (1) NOTE: this must be after the chromatography						
				ng <i>R</i> _f values with known amino acids / compare wit mino acids run at the same time (1)	h height of spots f	rom [4		
	(d)	(sim	ple) :	sugars / monosaccharides (1)		[1		
	(e)	(i)	Has	many C=C bonds / has many carbon-carbon double	<u>e bonds</u> (2)			
			lf two	o marks not scored, award 1 mark for <u>has C=C dou</u>	<u>ble bond</u> .	[2		
			Deco	nine / bromine water (1) blourised / goes colourless (1) DRE: goes clear / discoloured / fades				
				E: second mark dependent on correct reagent		[2		
		(iii)	Poly	ester / <i>Terylene</i> / other named polyester (1)		[1		
						[Total: 12		

	Pa	ge 4	Mark Scheme	Syllabus	Paper				
			GCE O LEVEL – May/June 2014	5070	22				
A4	(a)	oxygen copper bromine lead							
		All four correct (3) Three correct (2) Two correct (1) ALLOW: correct formulae							
	(b)		$l^- \rightarrow C l_2 + 2e^- (1)$ LOW: e for e^-		[1]				
			drogen is low(er) down in the reactivity series (or reve s reactive (than sodium) (or reverse) (1)	rse) / hydrogen i	s [1]				
	(c)	Alumin	ium / calcium / sodium / potassium / lithium / barium / ma	agnesium (1)	[1]				
					[Total: 6]				
A5	(a)	Haematite – is iron ore / contains the iron / is reduced to form iron (1) Limestone – (decomposes to) form calcium oxide which removes impurities (1) ALLOW: lime (in place of calcium oxide)							
			forms carbon monoxide / reduces the iron ore (1)		[3]				
	(b)	Positive ions in regular layers (1) NOTE: 2 layers of ions is the minimum required in a diagram. Electrons shown interspersed between the particles drawn (1)							
		NOTE: Marks can be scored from correct description in writing or from a labelle diagram.							
	(c)	Softer / more malleable / more ductile (1)							
	(d)	(i) Iron(II) ions gain electrons / iron ions gain electrons / it gains electrons (1)							
		• •	een solution becomes paler / green solution fades comes colourless / magnesium becomes coated with a c	•	n [1]				
					[Total: 8]				

Page 5	Mark Scheme	Syllabus	Paper
	GCE O LEVEL – May/June 2014	5070	22

- **A6 A** iron (1)
 - **B** iron(II) chloride (1)
 - **C** hydrogen (1)
 - **D** iron(II) hydroxide (1)
 - **E** iron(III) chloride (1)
 - **F** iron(III) hydroxide (1)

[6]

[Total: 6]

B7 (a)

$$\begin{array}{ccccccccc}
H & H & H \\
| & | & | \\
H - C - C - C - H \\
| & | & | \\
H & C & H \\
H & C & H \\
H & H & H
\end{array}$$
(1)

[2]

[1]

- (b) (i) $2C_4H_{10} + 13O_2 \rightarrow 8CO_2 + 10H_2O(1)$ ALLOW: correct multiples / fractions IGNORE: state symbols [1]
 - (ii) Produces carbon monoxide / produces poisonous gas / produces toxic gas / produces lots of soot (1)
- (c) $C_4H_{10} + Cl_2 \rightarrow C_4H_9Cl + HCl(1)$ ALLOW: correct equation with further substitution of H by Cl [1]
- (d) (i) Cracking (1) [1]
 - (ii) (% H is) 16 (%) (1)

Moles C:
$$\frac{84}{12}$$
 Moles H: $\frac{16}{1}$ or mole ratio 7:16 (1)

Molecular formula is $C_7H_{16}(1)$

[3]

Page 6	Mark Scheme	Syllabus	Paper	
	GCE O LEVEL – May/June 2014	5070	22	
(iii) C A	۲₄ (1) L LOW: appropriate formula based on incorrect answe	er to (c)(ii)	[1]	
			[Total: 10]	
ALLO	$CH_2CH_2CH_2OH + 2K \rightarrow 2CH_3CH_2CH_2CH_2OK + H_2$ W: any correct multiple / fraction RE: state symbols	(1)	[1]	
(b) Pops	with lighted splint / (small) explosion with lighted splint	: (1)	[1]	
(c) Moles	of hydrogen = $\frac{400}{24000}$ = 0.01667 (1) (mark for workin	g or correct answe	er)	
Moles	of alkali metal = $0.01667 \times 2 = 0.03334$ (1) (mark for	working or correct	answer)	
A _r = 7	(1)			
	n / Li (1) W: appropriate answer based on incorrect A _r in step 3	3	[4]	
(d)				
H H H H H	$ \begin{array}{cccc} O & H & H \\ - \begin{matrix} H & - \end{matrix} \\ - \begin{matrix} C & - \end{matrix} \\ - \begin{matrix} H \\ - \end{matrix} \\ - \begin{matrix} H \\ - \end{matrix} \\ H \end{matrix} $ (1)		[1]	
	$D_6 \rightarrow 2CO_2 + 2C_2H_5OH(1)$ RE: state symbols			
Any t	vo (1 mark each) from			
• W • A • pl	east /arm / quoted temperature of 20–45°C osence of air / absence of oxygen / anaerobic H neutral / pH near neutral		101	
• D	stil to get final product		[3]	
			[Total: 10]	
• D	su to get intal product		[Total	

	Ра	ge 7	Mark Scheme	Syllabus	Paper				
			GCE O LEVEL – May/June 2014	5070	22				
B9	(a)	heat taken in / heat absorbed / heat energy taken in / heat energy absorbed (1)							
	(b)	Reaction	Reaction rate increases						
			Particles have more energy / particles moving faster / particles have more (kinetic) energy (1)						
		•	More particles have energy above activation energy / more effective collisions / more successful collisions / more energetic collisions / more fruitful collisions (1)						
	(c)	Position of equilibrium does not change (1) Same number moles of <u>gas</u> on both sides / same number of <u>gas</u> molecules on both sides / same volume of <u>gas</u> on both sides (1)							
	(d)	Moles of iron = $\frac{2.80}{56}$ = 0.05 (1) (mark for working or correct answer) Moles of Fe ₃ O ₄ = $\frac{0.05}{3}$ = 0.01667 (1) (mark for working or correct answer)							
		Mass of Fe ₃ O ₄ = (0.01667 × 232) = 3.87 g (1)							
		OR							
		168g of Fe makes 232g of Fe ₃ O ₄ (1) ALLOW: M_r = 232							
		2.8g of F	⁻ e makes 232/168 × 2.8 (1)						
		Mass = 3	3.867 (1)		[3]				
	(e)	NOTE: must be reference to zinc somewhere in the answer. If not max 1 mark.							
		Zinc coa	ting / barrier / layer / covering (1)						
		Stops water getting to iron / stops oxygen getting to iron (1)							
		OR							
			nore reactive / zinc is above iron in the reactivity se dised (1)	ries / zinc more lił	kely				

Zinc reacts in preference to iron (1)

[2]

[Total: 10]

Page 8		6	Mark Scheme GCE O LEVEL – May/June 2014					Syllabus	Paper
								5070	22
B10(a)	(i) (ii)	210 85 211 85 Aton	At E	tons 35 35 ame ato	electrons 85 85 omic numbe	neutrons 125 126 er and diffe	(1) (1) rent mas	s number / atoms	[2] with
		atorr with	nic numbe different r	r and o number	different nuc s of neutron	cleon numb	er / atom	rons / atoms with sa s of the same elen	
(b)	IGN	IORE	: inner she	ell elec	agram (1) trons all dots or al	ll crosses			[1]
(c)	(i)	trans	sfers elect	rons to ers lost	astatine (1) / gained: 2)	-	lectrons / magnes magnesium) 1 elec	
	(ii)	•	Does not	ng poir conduc electric	nt / high boil at electricity a city when mo	as a solid	ucts elect	ricity in solution	[2]
(d)	(i)	ALL	+ 2At [−] → OW: corre ORE: state	ect mult	tiples / fracti	ions			[1]
	(ii)				tive (than i an astatide i			/ iodide ions are n	nore [1] [Total: 10]