MARK SCHEME for the May/June 2015 series

5070 CHEMISTRY

5070/21

Paper 2 (Theory), maximum raw mark 75

This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began, which would have considered the acceptability of alternative answers.

Mark schemes should be read in conjunction with the question paper and the Principal Examiner Report for Teachers.

Cambridge will not enter into discussions about these mark schemes.

Cambridge is publishing the mark schemes for the May/June 2015 series for most Cambridge IGCSE[®], Cambridge International A and AS Level components and some Cambridge O Level components.

® IGCSE is the registered trademark of Cambridge International Examinations.

Pa	age 2	Mark Scheme	Syllabus	Paper
		Cambridge O Level – May/June 2015	5070	21
A1	(a)	Butanoic acid / propanoic acid (1)		[1]
	(b)	Propanol (1)		[1]
	(c)	Ethanol/methanol/propanol AND		[1]
		Butanoic acid / propanoic acid (1)		
	(d)	Ethyl butanoate (1)		[1]
	(e)	Propane/propanoic acid (1)		[1]
				[Total: 5]
A2	(a)	$Ca(OH)_2 + CO_2 \rightarrow CaCO_3 + H_2O(1)$		[1]
	(b)	Calcium hydroxide is a base/calcium hydroxide is an alkali/calcium hyd contains $OH^{-}(1)$	Iroxide	
		$H^+ + OH^- \rightarrow H_2O$ (1)		[2]

(c) Reacts (with ammonium nitrate) to give ammonia (1)

Reduces nitrogen content of soil/ammonia escapes into the air (1)	[2]
---	-----

(d)

	Ca	Н	Р	0
Mole	17.1	1.7	26.5	54.7
ratio	40 ′	1 ′	31 ΄	16 ″
	0.4275	1.7	0.8548	3.419
Simplified	0.4275	1.7	0.8548	3.419
ratio	0.4275	0.4275	0.4275	0.4275
	/	/	/	/
	1	4	2	8

 $\begin{array}{ll} \mbox{Mole ratio line (1)} & \mbox{Simplified ratio line (1)} \\ \mbox{Empirical formula } CaH_4P_2O_8 \ (1) \\ \mbox{Anion } H_2PO_4^{-} \ / \ H_4P_2O_8^{\ 2^-} \ / \ PO_4^{\ 3^-} \ (1) \end{array}$

[4]

[Total: 9]

Page 3		3	Mark Scheme	Syllabus	Paper
			Cambridge O Level – May/June 2015 5070		
A3	(a)	(i)	Bond breaking absorbs energy and bond making releases energy/breaking is endothermic and bond making is exothermic (1)	bond	
			Less energy absorbed than released/more energy released than absorbed/endothermic energy change is less than exothermic ener change/exothermic energy change is more than endothermic ener change (1)	ду .ду	[2]
		(ii)	Moles of oxygen = 1.5 (1) Energy released = 588 (1)		[2]
	(b)	CF	C/oxides of nitrogen/nitric oxide (1)		[1]
	(c)	(i)	Moves to the left/moves to reactants/moves to ozone/backward re favoured (1)	eaction	
			on right/more volume (of gas) on right (1)	lecules	[2]
		(ii)	Moves to the left/moves to reactants/moves to ozone/backward refavoured (1) (Forward) reaction is endothermic/reverse reaction is exothermic (2)	eaction	[2]
		(iii)	Reaction is slower because particles are moving slower/rate decrea because particles have less energy (1)	ases	[4]
			There are fewer successful collisions/fewer particles have energy a activation energy (1)	above the	[2]
					[Total: 11]
A4	(a)	Ato with	ms with same number of protons and different number of neutrons/an same atomic number and different mass number (1)	atoms	[1]
	(b)	nun nun eleo	nber of neutrons 17 (1) nber of protons 16 (1) ctronic configuration 2.8.6 (1)		[3]
	(c)	S ₈ ((1)		[1]
	(d)	(i)	Weak intermolecular forces/weak attraction between molecules (1)		[1]
		(ii)	No free electrons/no delocalised electrons/all electrons used in bo mobile electrons (1)	nding/no	[1]
	(e)	K⁺ a S²⁻	and 2.8.8 (1) and 2.8.8 (1)		[2]

Page 4		ŀ	Mark Scheme	Syllabus	Paper
			Cambridge O Level – May/June 2015	5070	21
	(f)	Bo Re	th shared pairs between H and S (1) st of structure correct (1)		[2]
	(g)	2H	$_{2}S + SO_{2} \rightarrow 3S + 2H_{2}O(1)$		[1]
					[Total: 12]
A5	(a)	(i)	B is O ₂ (1)		[1]
		(ii)	$2Cu(NO_3)_2 \rightarrow 2CuO + 4NO_2 + O_2$		
			Identification of NO_2 as a product (1) Balanced equation (1)		[2]
	(b)	C i D i	s ammonia (1) s copper(II) hydroxide (1)		[2]
	(c)	An cai	y soluble carbonate e.g. sodium carbonate/potassium carbonate/an bonate (1)	nmonium	
		Cu	$^{2+}(aq) + CO_3^{2-}(aq) \rightarrow CuCO_3(s)$		
		Co Sta	rrect formulae (1) ite symbols – dependent on formulae (1)		[3]
					[Total: 8]
B6	(a)	Ad An	d sodium hydroxide (and warm) (1) imonia formed/gas that turns most red litmus paper blue (1)		[2]
	(b)	Mc Mc Vo	les of NH ₄ NO ₂ = 0.025×0.500 OR 0.0125 (1) les of N ₂ = 0.0125 (1) lume of N ₂ = 0.3 dm ³ /300 cm ³ (1)		[3]
	(c)	N_2	D and $H_2O(1)$		[1]
	(d)	Us Us No Re	e of ammonia/ammonium carbonate (1) e titration/add acid or alkali via a burette to other chemical (1) te volume of acid or alkali used / find reacting volume/find the end-p peat without the use of an indicator (using the same volumes)/heat	oint (1)	
		ne	utralised solution with carbon and then filter (1)		[4]
					[Total: 10]

Page #	5	Mark Scheme	Syllabus	Paper
		Cambridge O Level – May/June 2015	5070	21
B7 (a)	Μ	$oO_3 + 2Al \rightarrow Al_2O_3 + Mo(1)$		[1]
(b)	R O	eduction since MoO ₃ loses oxygen AND xidation since A <i>l</i> gains oxygen (1)		[1]
(c)	M M M	$_{r}$ of MoO ₃ = 144 (1) oles of MoO ₃ is 0.868 (1) ass of Mo = 83.3 (g) (1)		[3]
(d)	Μ	olybdenum because aluminium can displace it (1)		[1]
(e)	(i	Closely packed metal ions (1) Delocalised electrons/free electrons/sea of electrons (1)		[2]
	(ii	ANY TWO FROM (Much) strong(er) attraction between electrons and positive ions (1) Needs more energy to break the attraction/needs more heat to ov the attraction (1) Greater charge on cation (1)) ercome	
		More delocalised electrons (1)		[2]
				[Total: 10]

Pa	ige 6	Mark Scheme	Syllabus	Paper
		Cambridge O Level – May/June 2015	5070	21
B 8	(a)	Fractional distillation (1)		
		Cracking (1)		[2]
	(b)	$2Cl^- \rightarrow Cl_2 + 2e^-(1)$		[1]
	(c)	Çl Çl		
		H—C—C—H H H (1)		[1]
	(d)	Hydrogen chloride (1)		[1]
	(e)	С <i>l</i> Н сс 		
		Correct repeat unit (1) Free bonds at the end (1)		[2]
	(f)	(i) Maximum mass = 2250 (tonnes) (1)		[1]
		(ii) % yield = $\frac{2175}{2250} \times 100$ (1)		101
		% yield = 96.7 (1)		[2]
				[Total: 10]
B9	(a)	Melting point below 25 °C (1) Boiling point above 25 °C (1)		[2]
	(b)	Particles' movement changes from vibrating to (translational) movement gain kinetic energy/particles move faster (1) Arrangement of particles becomes random/intermolecular forces are ov	t/ vercome (1)) [2]
	(c)	Volume is decreased (1) Particles become closer together/space between particles decreases (?	1)	[2]
	(d)	Fractional distillation AND Have different boiling points (1)		[1]

© Cambridge International Examinations 2015

(1)

[2]

[1]

(f) Any correct structure with one or more hydrogen atoms substituted by a chlorine (1)

(1)

Н

[Total: 10]