CAMBRIDGE INTERNATIONAL EXAMINATIONS

Joint Examination for the School Certificate and General Certificate of Education Ordinary Level

CHEMISTRY

PAPER 4 Alternative to Practical

OCTOBER/NOVEMBER SESSION 2002

1 hour

5070/4

Candidates answer on the question paper. Additional materials: Mathematical tables and/or calculator

TIME 1 hour

INSTRUCTIONS TO CANDIDATES

Write your name, Centre number and candidate number in the spaces at the top of this page. Answer all questions.

Write your answers in the spaces provided on the question paper.

INFORMATION FOR CANDIDATES

The number of marks is given in brackets [] at the end of each question or part question.

You should use names, not symbols, when describing all reacting chemicals and the products formed. Mathematical tables are available.

FOR EXAMINER'S USE

Local Examinations Syndicate

1 A student found the composition of air using the apparatus shown below.

Syringe **A** contained 90 cm^3 of air. The air was forced over heated copper into syringe **B**. The air was then forced back into syringe **A**.

The process was repeated several times until the volume of gas forced back into syringe **A** was constant.

The diagram below shows the volume of gas in syringe **A** after the experiment had finished.

(a) (i) Name the main gas remaining in syringe **A**. What is the volume of gas remaining in syringe A? (ii) Calculate the percentage of this gas in the original sample of air. (iii) (iv) During the experiment copper formed a compound. Give the name, formula and colour of this compound. name formula colour [6] (b) The tube containing the copper compound was removed from the syringes. The copper compound was heated and dry hydrogen gas was passed over it.

2	Silv silv	ver ioo er nit	dide may be made by the reaction between aqueous potassium iodide and aqueous rate.
	A s nitr	stude ate.	nt added 50 cm ³ of 1.0 mol/dm ³ potassium iodide to 30 cm^3 of 2.0 mol/dm ³ silver
			$KI(aq) + AgNO_3(aq) \longrightarrow KNO_3(aq) + AgI(s)$
	(a)	(i)	Describe what was seen during the reaction.
		(ii)	How could the silver iodide be removed from the mixture?
	(b)	(i)	Which of the reagents potassium iodide or silver nitrate was in excess? Explain your answer.
			answer
			explanation
		(ii)	Calculate the mass of silver iodide formed (A_r : Ag, 108; I, 127.)
			[5]
	(c)	The 1.0	e student did another experiment to make silver chloride by adding 50 cm ³ of mol/dm ³ potassium chloride to 30 cm ³ of 2.0 mol/dm ³ silver nitrate,
		(i)	Describe the appearance of the silver chloride
			on forming,
			on standing for a few minutes.

(ii) Was the mass of silver chloride more than, the same or less than the mass of silver iodide in (b)(ii)? Explain your answer. (A_r: Ag, 108; Cl, 35.5.)

6

5 A student prepared ethene from a hydrocarbon oil using the apparatus shown below.

6 An ester has the structural formula shown below.

It can be prepared by the reaction between:

- (a) methanol and methanoic acid.
- (b) methanol and ethanoic acid.
- (c) ethanol and methanoic acid.
- (d) ethanol and ethanoic acid.

[1]

7 Substance **F** is a fertiliser containing ammonium sulphate.

A student determined the mass of ammonia produced from a sample of F.

He added the sample to a previously weighed container which he re-weighed.

Mass of container and $\mathbf{F} = 10.44 \text{ g}$ Mass of container = 8.68 gMass of $\mathbf{F} =$

(a) Calculate the mass of F used in the experiment.

...... g [1]

The sample was placed in a beaker and $50.0 \, \text{cm}^3$ of $1.00 \, \text{mol/dm}^3$ sodium hydroxide (an excess) was added.

The mixture was heated until the following reaction was complete.

 $(NH_4)_2SO_4(aq) + 2NaOH(aq) \longrightarrow Na_2SO_4(aq) + 2H_2O(I) + 2NH_3(g)$

The reaction was complete when all the ammonia was evolved.

(b) Describe a chemical test for ammonia.

The remaining mixture, which contained excess sodium hydroxide, was transferred to a graduated flask and made up of 250 cm^3 with distilled water. This was solution **G**.

25.0 cm³ of **G** was transferred to a titration flask and a few drops of phenolphthalein indicator was added.

0.100 mol/dm³ hydrochloric acid was added to **G** until an end-point was reached.

Phenolphthalein is colourless in acid and red in alkali.

(c)	What was the colour change of the indicator at the end-point?	
-----	---	--

The colour changed from to to	[1]	
-------------------------------	-----	--

Three titrations were done. The diagrams below show parts of the burette at the beginning and end of each titration.

(d) Use the diagrams to complete the following table.

titration number	1	2	3
final reading / cm ³			
initial reading / cm ³			
volume of hydrochloric acid used / cm ³			
best titration results (\checkmark)			

Summary:

Tick (\checkmark) the best titration results. Using these results, the average volume of

hydrochloric acid required was cm³.

[4]

(e) Calculate the number of moles of hydrochloric acid in the average volume of 0.100 mol/dm³ hydrochloric acid in (d).

.....[1]

(f) Using the equation

$$HCl + NaOH \longrightarrow NaCl + H_2O$$

Deduce the number of moles of sodium hydroxide in 25.0 cm^3 of solution **G**.

......[1]

of solution G.[1] (h) Calculate the number of moles of sodium hydroxide in 50.0 cm³ of 1.00 mol/dm³ sodium hydroxide.[1] (i) By subtracting your answer in (g) from your answer in (h) calculate the number of moles of sodium hydroxide which reacted with the sample of F.[1] (j) Given that 1 mole of sodium hydroxide produces 17 g of ammonia. Calculate (i) the mass of ammonia produced from the original sample, g NH₃ (ii) the mass of ammonia produced from 100 g fertiliser. g $\rm NH_3$ / 100 g fertiliser $\rm F$ [2]

(g) Using your answer in (f) calculate the number of moles of sodium hydroxide in 250 cm³

8 The following table shows the tests a student did on substance **S** and the conclusions made from the observations.

Complete the table by describing these observations and suggest the test and observation which led to the conclusion from test 4.

	Test	Observation	Conclusion
1	S was dissolved in water and the solution divided into three parts for tests 2, 3 and 4.		S is not a compound of a transition metal.
2	 (a) To the first part, aqueous sodium hydroxide was added until a change was seen. (b) An excess of aqueous sodium hydroxide was added to the mixture from (a). 		S may contain Al ³⁺ or Zn ²⁺ ions.
3	 (a) To the second part, aqueous ammonia was added until a change was seen. (b) An excess of ammonia was added to the mixture from (a). 		S contains Zn ²⁺ ions
4			S contains C <i>l</i> ⁻ ions

9 The reaction between aqueous barium chloride and dilute sulphuric acid produces a white precipitate.

11

(a) Name and state the formula of this precipitate.

A series of experiments was done to find the mass of precipitate produced.

Solution **J** is 1.00 mol/dm^3 barium chloride Solution **K** is 1.00 mol/dm^3 sulphuric acid

 10.0 cm^3 of **J** was put into each of six test tubes. Increasing volumes of **K** were added to each test tube. The mixtures were filtered and the precipitates were washed with water, dried and placed in a weighed container which was reweighed.

The table overleaf shows the results of these experiments.

For Examiner's Use

[2]

			r	
volume of J / cm ³	volume of K / cm^3	mass of empty container / g	mass of container and precipitate / g	mass of precipitate / g
10.0	2.0	3.50	3.97	0.47
10.0	4.0	3.50	4.43	
10.0	6.0	3.50	4.70	
10.0	8.0	3.50	5.36	
10.0	10.0	3.50	5.83	
10.0	12.0	3.50	5.83	

(b) Complete the final column to give the mass of the precipitate.

(c) Using the grid below, plot the mass of precipitate on the y-axis against the volume of **K** on the x-axis. Join the points with two straight lines.

(d) One of the results is incorrect. Circle the result on your graph and suggest what the correct mass of precipitate should be.

..... g [1]

(e) What volume of **K** would produce 1.60 g of precipitate?

- (f) Why was the mass of precipitate the same in the last two experiments?

(g) The experiment was repeated using the volumes of J and K as shown in the table below. Using your results from the first experiment, complete the final column showing the mass of precipitate produced in each case.

volume of \mathbf{J} / cm ³	volume of K / cm^3	mass of precipitate / g
2.0	2.0	
2.0	4.0	
2.0	6.0	

[2]

BLANK PAGE

BLANK PAGE

DATA SHEET The Periodic Table of the Elements

								9 Gr	dno								
-	=											≡	≥	>	N	NII V	0
							Hydrogen										4 Helium
3 Lithium 3 Sodium 23	9 Beryllium 4 Magnesiur	E				_						5 Boron 27 27 27 27	6 Silicon Silicon	14 Nitrogen 31 Phosphorus	16 Oxygen 8 32 32 Sulphur 16	19 9 35.5 Ct Cthorine	- 20 20 Neon 10 Ar Poon 13 Ar Poon 14 Ar
39 Retassium	40 Calcium 20	45 Scandium 21	48 Ttanium 22	51 Vanadium 23	52 Cr Chromium 24	55 Mn Manganese 25	56 Iron Fe	59 CO Cobalt	59 Nickel 28	64 Copper	65 Zinc 30	70 Galilum 31	73 Ge Germanium 32	75 AS Arsenic	79 Selenium 34	Bromine 35	84 Krypton 36
85 Rub idium 37	88 Strontium 38	89 Yttrium 39	91 Zrconium 40	93 Nabi Niobium	96 Mo Molybdenum 42	Tc Technetium 43	101 Ruthenium 44	103 Rh Rhodium 45	106 Pd Palladium 46	108 Ag Silver	112 Cd Cadmium 48	115 In Indium 49	119 Sn 50	122 Sb Antimony 51	128 Te Tellurium 52	127 I lodine 53	131 Xe Xenon 54
133 CS Caesium 55	137 Ba ^{Barium} 56	139 Lanthanum 57 *	178 Hafnium 72	181 Ta Tantalum 73	184 V 74	186 Re Rhenium 75	190 OS Osmium 76	192 Ir 1ridium 77	195 Pt Platinum 78	197 Au Gold 79	201 Hg ^{Mercury} 80	204 Tt B1	207 Pb Lead 82	209 Bi Bismuth	Po Polonium 84	At Astatine 85	Radon 86
Fr Francium 87	226 Ra Radium 88	227 Actinium 89 †								_						-	
*58-71 L †90-103	anthanc Actinoic	oid series d series		140 Ce ^{Cerium}	141 Pr Praseodymium 59	144 Neodymium 60	Promethium 61	150 Sm Samarium 62	152 Eu 63	157 Gd Gadolinium 64	159 Tb ^{Terbium} 65	162 Dy Dysprosium 66	165 Holmium 67	167 Er 68	169 Thulium 69	173 Yb ^{Ytterbium} 70	175 Lu Lutetium 71
ه ۲	ж ж	a = relative aton X = atomic sym b = proton (atom	nic mass Ibol nic) number	232 Thorium 90	Protactinium 91	238 Uranium 92	Neptunium 93	Putonium 94	Americium 95	Curium Ocurium	BK Berkelium 97	Cf Californium 98	Einsteinium 99	100 Fermium	Mendelevium 101	Nobelium 102	Lr Lawrencium 103

The volume of one mole of any gas is $24\,dm^3$ at room temperature and pressure (r.t.p.).

5070/4 Nov02

16