MARK SCHEME for the October/November 2006 question paper

5070 CHEMISTRY

5070/02

Paper 2 (Theory), maximum raw mark 75

This mark scheme is published as an aid to teachers and students, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began.

All Examiners are instructed that alternative correct answers and unexpected approaches in candidates' scripts must be given marks that fairly reflect the relevant knowledge and skills demonstrated.

Mark schemes must be read in conjunction with the question papers and the report on the examination.

The grade thresholds for various grades are published in the report on the examination for most IGCSE, GCE Advanced Level and Advanced Subsidiary Level syllabuses.

• CIE will not enter into discussions or correspondence in connection with these mark schemes.

CIE is publishing the mark schemes for the October/November 2006 question papers for most IGCSE, GCE Advanced Level and Advanced Subsidiary Level syllabuses and some Ordinary Level syllabuses.

Page 2	Mark Scheme	Syllabus	Paper
	GCE O LEVEL - OCT/NOV 2006	5070	02

Section A

A1(a)	(i) (ii) (iii) (iv)	A/sulphur dioxide E/zinc oxide C and E/sodium bromide and zinc oxide (<u>both required</u>) C/sodium bromide	[1] [1] [1] [1]
(b)		CH ₂ Br	[1]
(c)		by (incomplete) combustion of fossil fuels/hydrocarbons/carbon source ALLOW: from car exhausts/engines; gas fires/boilers NOT: from cars/vehicles (alone) NOT: combustion (alone)	[1]
			[Total 6]
A2(a)	(i)	the <u>more</u> reactive the metal the <u>higher</u> the (decomposition) temperature/the less readily the carbonate is decomposed (or reverse argument) NOTE: comparison essential	[1]
	(ii)	NOT: the smaller the cation, the lower the decomposition temperature $MgCO_3 \rightarrow MgO + CO_2$ (ignore state symbols)	[1]
(b)	(i)	to produce <u>more</u> petrol/ <u>more</u> of the useful fractions/ <u>more</u> of the petrol fraction/to produce ethene/alkenes/fractions with higher demand ALLOW: produce <u>more</u> smaller molecules ALLOW: to produce plastics NOT: more profitable	[1]
	(ii)	NOT: produces smaller molecules/break down petrol fractions. <u>high</u> temperature; ALLOW: 350-550°C catalyst;	
		ALLOW: aluminium oxide/alumina IGNORE: pressure	[2]
	(iii)	$2C_2H_4/C_4H_8$ on right	[1] [Total 6]
A3(a)		225 seconds ALLOW: 220-230 (s)	[1]
(b)		$90/24000 = 0.0038 \text{ moles}/3.75 \times 10^{-3} \text{ (moles)}$	[1]
(c)		gradient greater at start;	
		ends up at the same volume (90cm ³) + flattens out NOT: line goes well above 90 cm ³ then drops down again	[2]
(d)		HC <i>l</i> particles/H ⁺ ions closer together when solution more concentrated OR more H ⁺ ions/HC <i>l</i> particles for given volume; NOT: more moles means more particles/more H ⁺ ions	
		<u>more frequent</u> collisions (with calcium carbonate); NOT: more successful collisions	[2]
		NOT: more chance of collisions	[Total 6]

Page 3		Mark Scheme Syllabus				Paper		
		GCE O LEVEL - OCT/NOV 2006 5070				02		
A4(a)		light bulbs/fluorescent tubes/lasers/provides inert atmosphere/in arc welding/refining of titanium OR zirconium NOT: lights (alone)/bulbs (alone)				c [1]		
(b)		complete/full outer electron shell ALLOW: atoms cannot gain/lose/share electrons (easily) NOT: 8 electrons in outer shell unless specify He with 2 NOT: reference to stability				[1]		
(c)	_							
		isotope	number of protons	number of electrons	number of neutrons			
		36 Ar 18	18	18	18			
	-	⁴⁰ Ar ¹⁸	18	18	22			
	L	6 boxes co	rrect = 2 marks;	5 boxes correct =	1 mark	[2]		
(d)		elements in number of p		rranged in order o	of atomic number/			
			have different am	ount of isotopes		[1]		
(e)		Xe + $2F_2$	Xe + $2F_2 \rightarrow XeF_4$					
(f)						[1]		
		NOT: below	ALLOW: correct position drawn on diagram NOT: below the bar NOT: vertically down/facing downwards					
A5(a)	(i)	20%						
	(ii)	ALLOW: 19 add (aqueo	[1]					
	()	ALLOW: for	add (aqueous) sodium hydroxide/(aqueous) ammonia; ALLOW: formulae red-brown precipitate/red-brown solid					
		NOT: red ppt						
(b)	(i)	solid particles sediment/fall to bottom ALLOW: filtration				[1]		
		ALLOW: se	dimentation ifugation/distillatio	n/decanting				
	(ii)			in accounting		[1]		
(c)	(i)		astes/odours			[1]		
	(ii)	to kill bacte	osorbs colours ria/sterilise water			[1]		
			kill micro-organis get rid of bacteria	-				
(d)	(i) (ii)		$2\text{HC}l \rightarrow \text{CaC}l_2$	+ 2H ₂ O		[1]		
	(ii)		$\rightarrow 11_2 \cup$			[1] [Total 9]		

	Page 4		
	A6(a)		
(i)	(b)		
(ii)			
(II)			
(iii			
	(c)		
	(-)		
	(d)		
	(e)		
	B7(a)		
	(b)		
	()		
	(c)		
(i)			
(i)			
(i) (ii)			

Page 5		Mark Scheme	Syllabus	Paper		
		GCE O LEVEL - OCT/NOV 2006	5070	02		
(d)		correct molar masses i.e. 80 and 132; ammonium nitrate: (28/80) x 100 = 35%; ammonium hydrogen phosphate: (28/132) x 100	= 21.2%/21%;	[3]		
(e)	eutrophication/increase in algal growth (on surface of water)/algal bloom/reduction of dissolved oxygen in water/water plants die					
				[Total 10]		
B8(a)		$2ZnS + 3O_2 \rightarrow 2ZnO + 2SO_2$		[1]		
(b)	(i)	(i) more moles/molecules of gas on left than on right ALLOW: 3 volumes (of gas) on left and 2 on right/more volumes of gas on left than right				
	(ii)	6				
		higher pressure means higher concentration of corrosive gases ALLOW: sulphur dioxide/trioxide is very corrosive OR				
		cheaper/more economic to carry out reaction at at	mospheric pressure	[1]		
	(iii)	reaction is exothermic/ ΔH is negative; if heat given out equilibrium shifts to left/reaction sl reactants/cooling favours the forward reaction	hifts in favour of	[2]		
(c)		filter solution (to remove excess iron); concentrate solution by warming/letting solution ev evaporate solution (then leave to crystallise) ALLOW: leave to crystallise NOT: evaporate to dryness	/aporate/partially	[2]		
(d)		moles NaOH = 0.15 x 20/1000 = 3 x 10^{-3} mol; moles H ₂ SO ₄ = 3x10 ⁻³ x $\frac{1}{2}$ = 1.5x10 ⁻³ mol; 1.5x10 ⁻³ x 1000/12 = 0.125 (mol/dm ³)		[3] [Total 10]		
B9(a)		ect structure of butanoic acid (all atoms and bonds n OW: OH in place of O – H	nust be shown)	[1]		
(b)	(i)	not completely ionised in solution/has high proport molecules in solution/has small proportion of H ⁺ ion not fully dissociated		[1]		
	(ii)	test with universal indicator/pH meter; ALLOW: test with pH paper NOT: test with indicator paper has pH between greater than 3 <u>and</u> less than 7/sta OR solution of the acid turns universal indicator ye NOT: has high pH/pH above 3 (alone)				
(c)		C = 0.18/12 H = 0.03/1 O = 0.08/16; empirical formula = C_3H_6O ; molecular formula = $C_6H_{12}O_2$ (1 mark)		[2] [1]		

Page 6		Mark Scheme	Syllabus	Paper	
	GCE O LEVEL - OCT/NOV 2006		5070	02	
(d)	(i) (ii)	$C_6H_{12}O_6 \rightarrow 2C_2H_5OH + 2CO_2$ potassium dichromate + (concentrated) sulphuric ALLOW: other reasonable oxidising agents	acid;	[1]	
		heat/reflux/warm ALLOW: bacteria; room temperature/stated temperature not above 45°C or below 5°C			
				[Total 10]	
B10(a)		Any three of: anode/impure copper electrode: decreases in thick (impurities) deposits below the anode/anode gets dissolves; cathode: copper deposited/increases in thickness/ ALLOW: goes pink anode: Cu \rightarrow Cu ²⁺ + 2e ⁻ ; cathode: Cu ²⁺ + 2e ⁻ \rightarrow Cu	smaller/anode	[3]	
		calloue. Cu $\downarrow Ze \rightarrow Cu$		[3]	
(b)	(i)	[1]			
	(ii)	solid copper sulphate has ions in fixed position/no ions which don't move/held in the (crystal) lattice; REJECT: do not have ions	t free to move/		
		in solution ions are free to move/ions move NOT: the ions are free (reference to electrons = 0 for the second mark)		[2]	
(c)		iron object/knife made the cathode/made the nega anode is nickel + solution of nickel salt (both points ALLOW: nickel nitrate/nickel sulphate/nickel chlori nickel compound NOT: nickel oxide/nickel hydroxide	s needed);	[2]	
(d)		in copper metal atoms/ions/particles arranged in la slide/slip over each other; (both 'layers' and 'slide/ NOT: layers move ACCEPT: diagrams if reasoning clear in alloy <u>different sized</u> atoms/ions/particles stop lay 2 nd type of atom/ions/particles disrupts the regular	slip' needed); yers from slipping/		
		metal ACCEPT: diagrams if reasoning clear		[2] [Total 10]	