MARK SCHEME for the October/November 2010 question paper

for the guidance of teachers

5070 CHEMISTRY

5070/22

Paper 2 (Theory), maximum raw mark 75

This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began, which would have considered the acceptability of alternative answers.

Mark schemes must be read in conjunction with the question papers and the report on the examination.

• CIE will not enter into discussions or correspondence in connection with these mark schemes.

CIE is publishing the mark schemes for the October/November 2010 question papers for most IGCSE, GCE Advanced Level and Advanced Subsidiary Level syllabuses and some Ordinary Level syllabuses.

UNIVERSITY of CAMBRIDGE International Examinations

	Page 2		Mark Scheme: Teachers' version	Syllabus	Paper		
			GCE O LEVEL – October/November 2010	5070	22		
A1	(a) (i)	pota	ssium / K		[1]		
	(ii)	alum	ninium / Al		[1]		
	(iii)	iron	/ Fe		[1]		
	(iv)	mag	nesium / Mg		[1]		
	(v)		r / Ag OW: symbols such as Ag, Fe etc.		[1]		
	 (b) <u>positive ions</u> regularly arranged; ALLOW: space between ions as long as the arrangement is regular ALLOW: ions touching ALLOW: positively charged atoms for + ions ALLOW: large empty circles in regular arrangement and labelled as positive ion 						
	electrons shown as negative charges <u>between the</u> ions; ALLOW: very small empty circles between the ions and labelled electrons ALLOW: electrons within very small circles / electrons as e ⁻ or e or – IGNORE: disparity between ionic charges and number of electrons NOT: electrons as negative charges in large circles NOTE: mark independently						

	Page 3			Mark Scheme: Teachers' version	Syllabus	Paper
				GCE O LEVEL – October/November 2010	5070	22
A2	(a)	(i)	ALL	ose; OW: other suitable sugars e.g. sucrose OW: sugar ORE: carbohydrate		[1]
		(ii)	temp IGN	two from: perature within range 20–40°C; ORE: temperatures below 20°C ECT: high temperature / temperatures above 40°C		[2]
				of oxygen / lack of air / anaerobic ECT: oxygen needed		
			yeas IGN	st ORE: bacteria / fungi / enzymes / catalyst / zymase		
				er present / in solution / moisture present / damp ECT: dry		
				neutral ECT: acid / alkali		
				ORE: pressure ORE: optimum pH / temperature etc.		
	(b)	ALI ALI	LOW: LOW:	$H_2O \rightarrow C_2H_5OH$ displayed / graphical formulae C_2H_6O for ethanol :: state symbols		[1]
	(c)	(i)	ethy	l ethanoate / ethyl acetate		[1]
		(ii)	ALL IGN	rification / addition-elimination / condensation / ester fo OW: reversible / equilibrium (reaction) ORE: exothermic / endothermic ECT: addition alone	ormation;	[1]
	(d)	(i)	prop	panol;		[1]
		(ii)		Н Н Н H-C-C-C-O-H H Н Н		[1]
				OW: structure of propan-2-ol OW: –OH in place of –O–H		
						[Total: 8]

	Ра	ge 4	Mark Scheme: Teachers' version	Syllabus	Paper	
			GCE O LEVEL – October/November 2010	5070	22	
A3	(a)		m ³ / min alue AND units must be correct for one mark		[1]	
	(b)		<u>zinc</u> was used up / there was no <u>zinc</u> left / <u>zinc</u> is limiti RE: the zinc no longer reacted / zinc finished reacting /		[1] ved	
	(c)) (i) line steeper from the 0-0 point AND ending at the same level (40 cm^3)				
		m A	wers the activation energy / makes the reaction go by akes the reaction go by faster pathway; _LOW: makes the reaction go by a different pathway GNORE: supplies activation energy / increases speed o		oathway / [1]	
	(d)) goes slow <u>er</u> / speed decreases / small <u>er</u> surface area (with larger pieces) / less area exposed (with larger pieces); ALLOW: (reaction) takes more time IGNORE: goes slowly / small surface area REJECT: goes slower at the start + larger surface area for larger pieces				
		few <u>er</u> collisions per minute / few <u>er</u> particles exposed to react per minute / particles collide less often / frequency of collisions decreased / collision rate lower / chance of collisions decreases; Answer must be comparative e.g. NOT: few collisions per minute				
	(e)	• in A	/o from: creases / goes faster LLOW: (reaction) takes less time OT: goes fast		[2]	
		hi IC	articles have more energy (at higher temperature) / gher temperature) / particles collide faster / collision rat SNORE: particles vibrate more OTE: must have reference to particles or named particles	e increases;	aster (at	
			ore particles have activation energy / more chance of s Illisions are successful	uccessful collision	ns / more	

	Page 5			Mark Scheme: Teachers' version	Syllabus	Paper	
				GCE O LEVEL – October/November 2010	5070	22	
Α4	ALLOW: IGNORE			containing two atoms / two atoms joined (by bond) / a has two atoms : two atoms / two atomic / mention of states / ment ; / made of two elements / elements with two ato d	on of same or	different	[1]
	(b)	(i)	black ALL NOT NOT	darker / chlorine green bromine red (or brown or red- c or grey or black DW: goes from green to black or from yellow (F ₂) to bla : iodine dark brown / silver : colour increases / gets more intense ECT: chloride / bromide / iodide (instead of halogens)	,	•••	[1]
		(ii)		nine – liquid; (1) ne – solid (1)		[[2]
	(c)	(i)		$2I^{-} \rightarrow 2Br^{-} + I_{2}$ DRE: state symbols / K ⁺ ions		[[1]
		(ii)	ACC REJ REJ yello (both	(aqueous) silver nitrate / (aqueous) lead nitrate; (1) EPT: formulae ECT starch test alone / addition of chlorine alone ECT: if incorrect acid added w precipitate; (1) n yellow and precipitate needed for mark) E: second mark dependent on correct reagent.		[.	[2]
		(iii)		rine more reactive than bromine (or reverse argument) : chloride more reactive than bromine		[[1]
	(d)	ALL ALL	OW: OW:	^t and Cl ⁻ (both needed for the mark) H ⁺ / H ₃ O ⁺ ,Cl ⁻ and OH ⁻ correct answer as part of equation e.g. HC $l \rightarrow H^+ + C$ H ⁺ C l^-	5 <i>1</i> -	[[1]
	(e)	mol ALL Mol ALL ALL	es Ca OW: arity o OW: OW:	$Cl = 0.015 \times 6/1000 \text{ OR } 9 \times 10^{-5}$; (1) a(OH) ₂ = ½ those of moles HC <i>l</i> ; (4.5 × 10 ⁻⁵) (1) any indication of correct 1:2 ratio of Ca(OH) ₂ = 4.5 × 10 ⁻⁵ × 1000/20 = 2.25 × 10 ⁻³ (mol / correct answer without working / 2.3 × 10 ⁻³ (mol / dm ³) Use of $\frac{V_1M_1}{V_2M_2}$ with correct figures e.g. $\frac{20 \times M_1}{0.015 \times 6}$ (1 masses of 1:2 ratio e.g. for the above ½ = V_1M_1 / V_2M_2 (1 massiver (1 mark)	ark)	[[3]

[Total: 12]

	Page 6			Mark Scheme: Teachers' version	Syllabus	Paper	
				GCE O LEVEL – October/November 2010	5070	22	
A5	(a)	(i)	1 m	ark for each pair of matching descriptions up to max of	2 marks		[2]
			•	diamond: atoms closely packed graphite: layers / atoms less closely packed /			
				diamond: each atom joined to 4 other atoms graphite: each atom joined to 3 others ALLOW: (atoms in) diamond form more bonds than gr	aphite		
			•	diamond: atoms arranged tetrahedrally / in a pyramid / ALLOW: in triangles graphite: atoms arranged in hexagons / rings / layers	[/] in bent hexagor	าร /	
			•	diamond: <u>all</u> atoms connected (by covalent bonds)/ graphite: some atoms (i.e. those between layers) not bonds)	connected (by	covalent	
			•	graphite: had intermolecular forces / van der Waal's fo diamond doesn't / has strong forces or bonds through			
			•	diamond has no free moving electrons / no delocalised involved in bonding graphite has (some) delocalised / mobile electrons	d electrons / all e	electrons	
		(ii)	-	raphite the <u>layers</u> can slide / weak forces between th es between the <u>layers;</u>	e <u>layers</u> / interm	olecular	[1]
			cova ator ALL	liamond there is continuous 3 dimensional structure alent bonds are linked in all directions / (strong) bond ns in fixed positions OW: <u>all</u> the atoms are bonded together IECT: ionic structure	()		[1]
	(b)	(i)	ALL gain ALL	gen removed from the tin oxide / it loses oxygen / carbo OW: oxidation number of tin (in tin oxide) decreases / t is electrons OW: tin loses oxygen / Г: wrong oxidation numbers / electron gain without qua	in (in tin oxide)	away;	[1]
		(ii)	IGN with	poisonous / toxic; ORE: kills red blood cells / stops red blood cells can haem ORE: harmful / causes pollution / dangerous / hazardo		ombines	[1]

	Page 7		,	Mark Scheme: Teachers' version	Syllabus	Paper
				GCE O LEVEL – October/November 2010	5070	22
	(c)	(i)	_	+ C \rightarrow 2CO ORE: state symbols		[1]
		(ii)		ectrons shared between C and O; (1) n bonding electrons on outer shell of oxygen and 2 n	on bonding elec	trons on
			oute REJ elect IGN IGN	r shell of carbon (1) ECT: 0 non bonding electrons on outer shell of oxy trons on outer shell of carbon ORE: dots / crosses ORE: inner shell electrons 'E: mark these points independently	-	[2]
		(iii)	CrC _e ALL	₆ O ₆ OW: Cr(CO) ₆		[1]
						[Total: 10]
B6	(a)	ÂLL	_OW:	psorb CO ₂ from atmosphere / plants take up CO ₂ in pho plants use carbon dioxide	otosynthesis; (1)	
				n out in respiration; (1) carbon dioxide breathed out in animals		
		idea	a of (r	of CO ₂ given out (in respiration) equal to that absorb oughly) equal uptake and release of carbon dioxide; (carbon dioxide given out in balance with carbon dioxid	1)	thesis) / [3]
	(b)	(i)	•	two possible consequences (1 mark for each) e.g. sea level rise / flooding of low lying land / ALLOW: floods		[2]
			•	NOT: increase in water level climate change / extreme weather / increased rainfall / NOT: weather unpredictable	,	
			•	desertification / <u>more</u> forest fires / <u>more</u> droughts / melting of glaciers / melting of polar ice caps / melting NOT: increase in temperature / greenhouse effect skir		
		(ii)	ALL	+ $2O_2 \rightarrow CO_2$ + $2H_2O$ OW: multiples ORE: state symbols		[1]
		(iii)	ALL	titution (by chlorine) / reaction with chlorine (in the ligh OW: suitable word equation or symbol equation ECT: addition reaction	it) /	[1]

Pa	Page 8		Mark Scheme: Teachers' version	Syllabus	Paper	
			GCE O LEVEL – October/November 2010	5070	22	
(c)	(i)	ALLO IGNO	er / longer / heavier / molecules have higher boiling poi OW: higher boiling point when more carbon atoms (in r ORE: the boiling points increase / they get higher ORE: higher boiling point with more bonds / reference Iting points / 'bond' breaking between molecules	nolecule)	[1] r forces	
	(ii)		temperature / heat; OW: quoted temperatures between 300°C–800°C		[1]	
		ALLO	HER: Ilyst / named catalyst e.g. aluminium oxide / silicon dio OW: porous pot / ceramics ECT: incorrect catalyst	xide / zeolites	[1]	
		-	pressure / quoted pressure between 50-200 atmosphe	eres		
	τ, τ					
B7 (a)			ons can't move / ions in fixed position / no free ions / io : there are no ions / reference to electrons	ns are in a lattice	; [1]	
	ALL	_OW:	olten ions can move / ions are free to move / are mobile ions are free : ions moving in solution	2;	[1]	
			: reference to electrons moving (in addition to ions mov	ving) /		
(b)	ALL	_OW:	hlorine AND cathode: zinc $Cl_2 / Cl / Zn$,	[1]	
			correct products from equation (need not be balanced : Cl^{-} / chloride / Zn^{2+})		
(c)	1 m 1 m ALL	hark fo hark fo _OW:	$O_2 + 2H_2O + 4e^-$ or correct reactants and products (OH ⁻ , O ₂ and H ₂ O) or correct balance with electrons multiples in both cases e for e ⁻		[2]	
(d)		• •	eous) sodium hydroxide / other suitable hydroxide / (a droxide alone	queous) ammonia	a; (1)	
	<u>whi</u>	<u>te pre</u>	ecipitate; (1)			
	-	-	te soluble in excess (hydroxide or ammonia) / dissests solution in excess (1)	olves in excess	/ gives [3]	
(e)	correct formula masses 136 for $ZnCl_2$ AND 204 for $Zn(NH_3)_4Cl_2$ (1) correct answer (3.4 × 204/136) = 5.1 (g) (1) ALLOW: error carried forward from <u>one</u> incorrect formula mass				[2]	
					[Total: 10]	

Page 9					Paper
			GCE O LEVEL – October/November 2010	5070	22
B8 (a)	(i)	ALL	nesium oxide and hydrogen (both required) OW: correct formula of products ORE: incorrect equation		[1]
	(ii)	1 ma	$_{3}$ COOH + Mg \rightarrow (CH $_{3}$ COO) $_{2}$ Mg + H $_{2}$ ark for correct reactants and products ark for balance (dependent on correct reactant and pro	ducts)	[2]
(b)	any ∙	add	e from: hydrochloric acid to (excess) magnesium carbonate; ECT: this first mark if titration suggested		[3]
	•	heat from	(off excess carbonate); filtrate or solution to crystallisation point / evaporate the filtrate / leave in a warm place / leave to crystallise : heat / dry it / put it in the oven / let all water evaporat	e;	ne water
	•	pick	out crystals / filter off crystals / dry crystals on filter pa	per	
(c)	•	,	decomposition endothermic		[1]
(d)	(i)	ALLO dista ALLO limev ALLO	ht or strength of Bunsen flame / OW: temperature of Bunsen / temperature / amoun once of Bunsen flame from tube / amount of carbonate OW: volume of carbonate in tube / mass of carbo water in tube OW: same size of (carbonate) particles ORE: pressure	in the tube /	
	(ii)	(cart ALL(r of decomposition is copper (carbonate) > zinc (carbonate); (1) Oonate); (1) OW: copper carbonate takes shortest time and mag est time / copper carbonate the fastest and magnesiur	nesium carbona	te takes
		the r the r	ess reactive (the metal), the faster the rate (of decomp nore reactive (the metal) the slower the rate (of decom nore reactive (the metal) the longer it takes (to decomp OW: the most reactive takes the most time ORA	position) /	[2]
					[Total: 10]

	Page 10			Syllabus	Paper
			GCE O LEVEL – October/November 2010) 5070	22
B9	(a)	(i)	burning fossil fuels / burning named fossil fuel / volca IGNORE: gases from exhausts / factory chimneys / / decomposition of fossil fuels		
		(ii)	 any suitable e.g. erosion of buildings / statues (made of carbonate IGNORE: erosion of rocks / destroys building / d ALLOW: corrosion of buildings / damages buildin corrosion of metal structures / bridges etc. / ALLOW: erosion of metal structures etc. forest death / crop loss / reduction in plant growt NOT: kills plants (in stem of question) / destroys soil acidification / leaching from soil 	issolves stones ngs h / do not grow prope	[1] rly
	 (b) (i) CaCO₃(s) + H₂SO₄(aq) → CaSO₄(aq) + CO₂(g) + H₂O(l) 1 mark for balanced equation 1 mark for correct state symbols (dependent on correct formulae) ALLOW: CaSO₄(s) 				[2]
		(ii)	Any suitable use e.g. (making) paints / (making) dyes / (making) plastics / fibres / (making) soaps / (making) detergents / clean water processing / removing rust ALLOW: for adjusting pH of the soil / making soil catalyst / IGNORE: general chemical used in the lab / dehydra	ing metals / oil refinin less alkaline / car b	g / waste
		(iii)	completely ionised / completely dissociated; ALLOW: the hydrogen ion is fully ionised / completel IGNORE: low pH / has more hydrogen ions	y ionises the hydroge	[1] n ions
	(c)	ALL	AND sulfur (both needed) -OW: oxygen and sulfur -OW: sulfide ore in place of sulfur		[1]
	(d)	(i)	enthalpy change ALLOW: heat change / amount of energy released of energy change IGNORE: exothermic / thermal energy / amount of energy absorbed / enthalpy		
		(ii)	reaction goes to left / favours the reactants / reverse product decreases; (1)	e reaction occurs / a	mount of
			(because) the reaction is exothermic; (1) ALLOW: goes to the side which is endothermic		[2]
					[Total: 10]