CAMBRIDGE INTERNATIONAL EXAMINATIONS GCE Ordinary Level

MARK SCHEME for the October/November 2013 series

5070 CHEMISTRY

5070/21 Paper 2 (Theory), maximum raw mark 75

This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began, which would have considered the acceptability of alternative answers.

Mark schemes should be read in conjunction with the question paper and the Principal Examiner Report for Teachers.

Cambridge will not enter into discussions about these mark schemes.

Cambridge is publishing the mark schemes for the October/November 2013 series for most IGCSE, GCE Advanced Level and Advanced Subsidiary Level components and some Ordinary Level components.

	Page		l I	Mark Scheme	Syllabus	Paper
				GCE O LEVEL – October/November 2013	5070	21
A 1	(a)	iron	(II) c	hloride (1)		[1]
	(b)	carl	oon d	lioxide (1)		[1]
	(c)	nitro	ogen	dioxide (1)		[1]
	(d)	cald	cium (oxide (1)		[1]
	(e)	carl	oon d	lioxide (1)		[1]
	(f)	silv	er chl	oride (1)		[1]
						[Total: 6]
A2	(a)	C _n F	I _{2n} (1)			[1]
	(b)	ANY TWO FROM: have same functional group (1)				
		physical properties change gradually (down the series) (1)				
		hav	e sim	nilar chemical properties (1)		
		cha	in inc	creases by CH ₂ for each successive member (1)		[2]
	(c)	(i)		ONE FROM: lyst/aluminium oxide/zeolites/silicon dioxide (1)		
			high	temperature/values between and including 400-500	0°C (1)	[1]
		(ii)	C ₁₄ F	$H_{30} \rightarrow C_8 H_{16} + C_6 H_{14} (1)$		[1]
	(d)	add	lition	(1)		[1]

Page 3	Mark Scheme	Syllabus	Paper
	GCE O LEVEL – October/November 2013	5070	21

(e) ANY TWO FROM:

does not conduct electricity/does not conduct heat (1)

it is a gas/low melting point/low boiling point (1)

insoluble in water/soluble in organic solvents (1)

[2]

(f) absorbs ultra violet/UV light (1)

(too much) UV light harmful/(too much) UV causes skin cancer (1)

[2]

[Total: 10]

[1]

(b) (i) atoms of same element with different number of neutrons (1)

[1]

(ii)

isotope	number of protons	number of electrons	number of neutrons
⁴² Ca	20	20	22
⁴⁸ Ca	20	20	28

proton column (1)

electrons column (1)

neutrons column (1)

[3]

(c) (i)
$$CaCO_3 + 2HCl \rightarrow CaCl_2 + CO_2 + H_2O$$
 (1)

[1]

(ii) calcium ion = 2, 8, 8 and charge is + 2 (1)

chloride ion = 2, 8, 8 and charge is -1 (1)

[2]

(d) (i) anode: chlorine

AND

cathode: calcium (1)

[1]

(ii) hydrogen (1)

[1]

(iii) ions cannot move/no free ions (1)

[1]

[Total: 11]

			GCE O LEVEL – October/November 2013	5070	21
Α4	(a)		; 78 to 79% (1) 20 to 21% (1)		[2]
	(b)	fractiona	al distillation (1)		[1]
	(c)	acid rair	NE FROM: n/effect of acid rain e.g. chemical weathering of carbo quatic life (1)	onate rocks/buildi	ngs/
		smog (1)		
		(worsen	s) asthma/breathing difficulties (1)		
		depletio	n of ozone layer (1)		[1]
	(d)	C ₈ H ₁₈ +	$8\frac{1}{2}O_2 \rightarrow 8CO + 9H_2O$		
		correct r	reactants and products (1)		
		balancir	g – dependent on correct formulae (1)		[2]
	(e)	speeds	up chemical reaction/lowers activation energy (1)		[1]
	(f)	(i) read	ction in which oxidation and reduction occur at the sa	ame time (1)	
		(ii) carl	oon monoxide oxidised to carbon dioxide (1)		
		nitro	ogen dioxide reduced to nitrogen (1)		[2]
					[Total: 10]
A 5	(a)	$M_{\rm r}$ of H_2	O ₂ as 34 (1)		
		$\left(\frac{32}{34} \times 10^{-1}\right)$	00 = 94% (1)		[2]
	(b)	measure	e volume of gas or oxygen (1)		
		at variou	us times (1)		[2]
	(c)	rate of r	eaction increases/reaction is faster (1)		
		particles	of H ₂ O ₂ closer together/more particles per unit volu	me/more crowded	particles (1)
		greater	frequency of collisions (1)		[3]

Mark Scheme

Syllabus

Paper

Page 4

Page 5			i	Mark Scheme	Syllabus	Paper	
				GCE O LEVEL – October/November 2013	5070	21	
	(d)	yea	st dies	(at higher temperatures)/enzymes denatured (1)		[1]	
						[Total: 8]	
В6	(a)	(i)		FOUR FROM: n converted to carbon dioxide (from air blast) (1)			
			carbon	n monoxide formed from reaction of carbon with ca	arbon dioxide (1)		
			carbon	n monoxide converts iron oxide, iron ore or haema	atite to iron (1)		
			(in hott	ter parts of furnace) carbon converts iron oxide, ir	on ore or haemati	te to iron (1)	
			idea of	f reduction of iron oxide (1)			
			calciun	m carbonate/limestone decomposes to calcium ox	ride (1)		
			calciun	m oxide reacts with silicon dioxide/sand to form sla	ag (1)		
			balanc	eed equation for iron oxide reduction (1)		[4]	
	(b)	in 'p	oure' iro	on the layers can slide (when force applied) (1)			
		in a	lloy the	(larger) Mn atoms stop the layers from sliding (1)		[2]	
	(c)	(i)	0.0375	5 / 0.038 mol (1)		[1]	
		(ii)	0.005 /	$1/5 \times 10^{-3} \text{ mol (1)}$		[1]	
		(iii)	mol H ₂	$_2$ = 5 x 10 ⁻³ /2 = 2.5 x 10 ⁻³ mol (1)			
			60 (cm	n³) / 0.06 dm³ (1)		[2]	
						[Total: 10]	
В7	(a)	(i)		.48/12 H = 0.08/1 C <i>l</i> = 1.42/35.5) 04 H = 0.08 C <i>l</i> = 0.04 (1)			
			CH ₂ C1	(1)		[2]	
		(ii)	C ₂ H ₄ C	l_2 (1)		[1]	
	(b) two or more units shown polymerised with single bonds only/single unit with only and brackets (1)						

[2]

extension bonds shown (1)

Page 6	Mark Scheme	Syllabus	Paper
	GCE O LEVEL – October/November 2013	5070	21

(c) ANY ONE FROM:

in condensation polymer a small molecule is released (on polymerisation) whereas in addition polymer no other substance is formed (1)

addition polymers formed by double bonds breaking (when monomers combine) whereas condensation polymers formed by reaction of (specific groups) in each monomer (1) [1]

(d) (i)
$$C_2H_4 + HCl + \frac{1}{2}O_2 \rightarrow C_2H_3Cl + H_2O / 2C_2H_4 + 2HCl + O_2 \rightarrow 2C_2H_3Cl + 2H_2O$$
 (1) [1]

(ii)
$$CuO + 2HCl \rightarrow CuCl_2 + H_2O$$
 (1)

(iii) ANY TWO FROM:

high melting point/high boiling point (1)

high density (1)

hard (1) [2]

[Total: 10]

B8 (a) ANY TWO FROM

mixture has no fixed composition but compound has fixed composition (1)

(components of) mixture can be separated (by physical means) but compound cannot (1)

when mixture formed no heat change/energy change but when compound formed there is an energy change (1)

the properties of a compound are different from those of the reactants (1) [2]

(b) zinc sulfide/labelled products on right and below the reactants (1)

labelled enthalpy change shown correctly with downward pointing arrow (1) [2]

(d) (acid which is) incompletely ionised (in water)/(acid which is) partially ionised (in water)/
(acid which is) incompletely dissociated (in water) (1) [1]

Page 7		,	Mark Scheme	Syllabus	Paper
			GCE O LEVEL – October/November 2013	5070	21
(e)	(i)	Zn +	$2H^{+} \rightarrow Zn^{2+} + H_{2} $ (1)		[1]
	(ii)		' THREE FROM excess Zn to sulfuric acid (1)		
		filter	(off excess zinc) (1)		
		heat	filtrate to crystallisation point/partially evaporate filt	rate (1)	
		filter	off crystals or pick out crystals and dry on filter pap	er (1)	[3]
					[Total: 10]
B9 (a)	СН	₃CO₂ľ	Na (1)		[1]
(b)	H ⁺	+ OH	\rightarrow H ₂ O (1)		[1]
(c)	(i)	e.g.	s to the right + reason (1) reaction goes in direction to oppose direction of charduce concentration of methanol	ange/reaction goe	s in direction [1]
	(ii)	e.g.	s to the left + reason (1) for endothermic reaction decrease in temperature A/reaction goes in direction so as to oppose the dec		
(d)	C ₈ F	H ₈ O ₂ (1)		[1]
(e)	ОН	⁻ (1)			[1]
(f)	(i)	0.00	25 / 2.5 × 10 ⁻³ mol (1)		[1]
	(ii)	0.00	125 / 1.25 × 10 ⁻³ mol (1)		[1]
	(iii)	M (O	$H)_2 + 2HCl \rightarrow MCl_2 + H_2O (1)$		[1]
(g)	cal	cium ((hydroxide) (1)		[1]
					[Total: 10]