CAMBRIDGE INTERNATIONAL EXAMINATIONS GCE Ordinary Level

MARK SCHEME for the October/November 2013 series

5070 CHEMISTRY

5070/22 Paper 2 (Theory), maximum raw mark 75

This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began, which would have considered the acceptability of alternative answers.

Mark schemes should be read in conjunction with the question paper and the Principal Examiner Report for Teachers.

Cambridge will not enter into discussions about these mark schemes.

Cambridge is publishing the mark schemes for the October/November 2013 series for most IGCSE, GCE Advanced Level and Advanced Subsidiary Level components and some Ordinary Level components.

Page 2				Syllabus	Paper				
			GCE O LEVEL – October/November 2013	5070	22				
A 1	(a)	oxy	gen / O ₂ (1)			[1]			
	(b)	nick	xel / Ni (1)			[1]			
	(c)	sulf	ur / S (1)			[1]			
	(d)	pota	assium / K (1)			[1]			
	(e)	(e) silver / Ag (1)							
	(f) :	zinc	c / Zn (1)			[1]			
					[Total:	6]			
Δ2	(a)	(i)	decreases as number of carbon atoms increases / incre	ases as number o	f carbon				
	(α)	(')	atoms decreases (1)			[1]			
	(ii)	ethanoic (acid) (1)			[1]			
	(i	ii)	correct formula for propanoic acid showing all atoms and	d all bonds (1)					
			н н о						
						[1]			
						r.1			
	(b)	(i)	$C_5H_{10}O_2$ (1)			[1]			
	(ii)	any value between and including 180–195°C (1)			[1]			
	(c)	(i)	Hydrogen (1) ALLOW: H ₂			[1]			
	(ii)	C ₃ H ₇ CO ₂ Na / C ₄ H ₇ O ₂ Na / correct displayed or structural	formula (1)		[1]			
	(d)	(i)	speeds up reaction (rate) / reaction faster (1)						
			lowers activation energy/makes reaction go by different lowers energy barrier (1)	route using less e		[2]			
	(ii)	solvent / fragrance / perfume / food additive / flavourings	s / polyesters / tery	/lene (1)	[1]			
	(i	ii)	propyl methanoate (1)			[1]			
	[Tota								

Page 3	Mark Scheme	Syllabus	Paper	
	GCE O LEVEL – October/November 2013	5070	22	
3 (a) 2,8,4 (1)				

isotope	²⁸ Si	³⁰ Si	
number of protons	14	14	(1)
number of electrons	14	14	(1)
number of neutrons	14	16	(1)

[3]

(c) Si +
$$2Cl_2 \rightarrow SiCl_4$$
 (1)

[1]

(d) (i) does not conduct electricity / does not conduct heat (1)

liquid (at room temperature) / low melting point / low boiling point (1)

[2]

(ii) bonding pair between each of the 4 Si and Cl atoms (1)

rest of structure completely correct (1)

IGNORE: inner shell electrons

[2]

(e) many (strong) bonds / many (covalent) bonds / lattice / giant structure / lattice of covalent bonds (1)

a lot of energy needed to break the <u>bonds</u> / high temperature needed to break the <u>bonds</u> / strong <u>bonds</u> (1)

[2]

[Total: 11]

A4 a (i) Any **two** of:

- respiration/fermentation (1)
- decay of organic matter / decomposition of organisms (1)
- combustion of carbon (compounds)/combustion of fossil fuel / combustion of named fossil fuel (1)
- decomposition of carbonates/decomposition of limestone (1)
- from increasing temperature of the oceans / removal of (dissolved) carbon dioxide from oceans (1)

volcanoes (1)

(ii) photosynthesis/absorbed by oceans/absorbed by seas (1) [1]

(b) (i) gas which absorbs infra-red (radiation) / gas which absorbs infra-red (light) (1)

ALLOW: gas which traps heat / gas which absorbs heat

[1]

<u> </u>	u,	, · ·		005015/51 0 (1 /21 1 22/2	5070	1 4001			
				GCE O LEVEL – October/November 2013	5070	22			
		(ii)		e: methane/other named greenhouse gas (1) OW: CFCs/nitrous oxide					
			dige:	hane) from swamps / rice paddy fields / gas from wastion / termites / wetlands (1) OW: (for methane) bacterial action (unqualified) / fistion (unqualified) / permafrost / glaciers / landfill E: 2nd mark for source is dependent on the correct	acking / animal	[2]			
(0	c)) (i) (acid which is) incompletely ionised (in water) / (acid which is) partly dissociated / (acid which is) incompletely dissociated (in water) (1)							
		(ii)	add	universal / full range indicator (1)					
			com	pare the colour with (colour on) indicator colour cha	art (1)	[2]			
(0		corr	ect fo	$O_3 \rightarrow Na_2CO_3 + CO_2 + H_2O_3$ ormulae (1) alance (1)		[2]			
						[Total: 11]			
						[TOtal. 11]			
A5 (a	a)	Mg	+ 2H($Cl \rightarrow MgCl_2 + H_2 (1)$		[1]			
(k	b)	(i)		labelled correctly with appropriate units e.g. volumin seconds/s on horizontal axis (1)	ne in cm³ on vertic	al axis and			
			then	h rising steadily from near 0–0 point (although 0 do either levelling off horizontally or rising with decrea ned (1)		•			
		(ii)	AND reac	I gradient less steep from the start tion finishing at same volume of gas as original or so to finish at the same volume as line A (1)	still below original	level but [1]			
(0		molar mass of $MgC_2 = 48$ (1) $24/48 = 50\%$ (1)							
		1 m	ark fo	or ecf from wrong molar mass of magnesium carbid	е	[2]			
						[Total: 6]			
						_			

Mark Scheme

Syllabus

Paper

Page 4

	Page 5						Mark \$	Schem	ie			Syllal	ous	Pa	per
				GC	E O L	EVEL	. – Oc	tober/N	Novem	ber 20	13	507	0	2	2
В6	(a)							node a / 20 ²		node: → O ₂ (1)				
		cath	node r	reactio	n: A l^3	+ 3e	- → A	l / Al ³⁺	$\rightarrow Al$	- 3e ⁻ (1)				
		 2 marks for the description: mention of molten aluminium oxide + cryolite in correct context (1) AND Any one of:													
		electrolyte mixture (1)									iving				
		 graphite electrode(s) / carbon electrode(s) (1) any temperature between and including 900–1200 °C quoted (1) at anode carbon + oxygen → carbon dioxide (in words or equation) (1) 									[4]				
	(b)	(i)	low c	density	/ (1)										[1]
		(ii)		d) <u>elec</u> E PT: l											[1]
	(c)	(i)	has a	an oxid	de lay	er (1)									
								xide (la non-poi			trongly	to the su	rface		[2]
		(ii)	displ	aceme	ent / re	edox (1	1)								[1]
		(iii)	Al ₂ (\$	SO ₄) ₃ ((1)										[1]
														[To	otal: 10]
В7	(a)	(uns	satura	ated): h	has (c	arbon-	carbo	n) douk	ole bon	d (1)					
				rbon): ınd hyd			bon a	nd hyd	rogen	only / h	as no o	other elen	nents th	an	[2]
	(b)	(i)	high	tempe	erature	e / valu	es be	tween a	and inc	luding	400–5	00°C (1)			
			catal	yst/alu	ıminiu	m oxid	de / ze	olites /	silicon	dioxide	∋ (1)				[2]
		(ii)	C ₁₄ H	$ _{30} \rightarrow C$	C ₂ H ₄ +	C ₁₂ H ₂	₂₆ (1)								[1]
	(c)	(i)	proof	fing / to s / bub	oys / j ble w	ugs / p rap / ca	olates . able c	/ dustb overing	ins / wa gs / por	ater pip nd lining	es / so gs / rop	noisture barew closu nes / nets hairs etc.	ires / sa / greenl	cks / ga	
		(ii)	C ₂ H ₅ I CH=		/ C₂ŀ	H₅CH=	CH ₂ ('	1)							[1]

	Page 6			Mark Scheme	Syllabus	Paper			
				GCE O LEVEL – October/November 2013	5070	22			
	(d)	28 g ethene → 46 g ethanol (1)							
				es gives 0.4 × 46/28 OR 0.657 / 0.66 (tonnes) (1) ecf from incorrect molar masses					
				5/100) = 0.03 / 0.033 / 0.0329 (tonnes) (1) ecf from step 2 i.e. for x answer in step 2 by 5/100		[3]			
		[Total							
В8	(a)) Idea of reactants being converted to products at the same time as products converted to reactants / reaction is reversible (1) reactants and products at constant concentrations / amounts of reactants and products are constant(1)							
		OR rate of forward reaction = rate of backward reaction = 2 marks							
	(b)	(i)	mol	HI = 0.94 x 50/1000 OR 0.047 mol (1)					
			mas	s HI = 0.047 x 128 = 6 / 6.0 / 6.02 / 6.016 (g) (1)		[2]			
		(ii) At 25 °C higher concentration of reactant / lower concentration of products / At 450 °C lower concentration of reactant / higher concentration of products / decrease in temperature shifts reaction to the left / increase in temperature shifts reaction to right / concentration of reactant increases as temperature decreases / concentration of products increases as temperature increases (1)							
			reac	etion is endothermic (1)		[2]			
	(c)	labe	elled	products / H_2 + I_2 on right and above the reactants (1)				
		entl	halpy	change shown as upward pointing arrow with ΔH or	· 'enthalpy change'	(1) [2]			
	(d)	add	l (aqu	ueous) silver nitrate / lead nitrate (1)					
		yell	ow pr	recipitate (1)		[2]			
						[Total: 10]			
В9	(a)	to increase plant growth / to improve plant growth / to grow better / to increase the crop / to increase the yield / to make more (plant) proteins / to make more amino acids / speeds up growth (of crops) (1)							

[1]

(b) $2NH_3 + H_2SO_4 \rightarrow (NH_4)_2SO_4$ (1)

Page 7	Mark Scheme	Syllabus	Paper	
	GCE O LEVEL – October/November 2013	5070	22	

(ii) ammonia is produced / NH₃ produced (1)

(d) mol HC $l = 0.01 \times 4/1000$ OR 4×10^{-5} (1)

mol Ca(OH)₂ = 2×10^{-5} / half answer to mol HCl (1)

concentration of Ca(OH)₂ =
$$(2 \times 10^{-5} \times 1000 / 10)$$

= 2×10^{-3} mol / dm³ (1) [3]

(e) heat solution to crystallisation point / leave in a warm place / partially evaporate solution (1)

filter (off crystals) / pick out crystals

AND

dry crystals with filter paper (1)

[2]

[Total: 10]