

CHEMISTRY

Paper 1 Multiple Choice

5070/12 October/November 2013 1 hour

Additional Materials:

Multiple Choice Answer Sheet Soft clean eraser Soft pencil (type B or HB recommended)

READ THESE INSTRUCTIONS FIRST

Write in soft pencil.

Do not use staples, paper clips, highlighters, glue or correction fluid. Write your name, Centre number and candidate number on the Answer Sheet in the spaces provided unless this has been done for you. DO **NOT** WRITE IN ANY BARCODES.

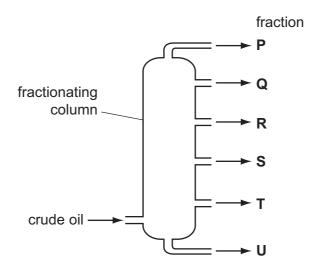
There are **forty** questions on this paper. Answer **all** questions. For each question there are four possible answers A, B, C and D.

Choose the **one** you consider correct and record your choice in **soft pencil** on the separate Answer Sheet.

Read the instructions on the Answer Sheet very carefully.

Each correct answer will score one mark. A mark will not be deducted for a wrong answer. Any rough working should be done in this booklet. A copy of the Periodic Table is printed on page 16. Electronic calculators may be used.

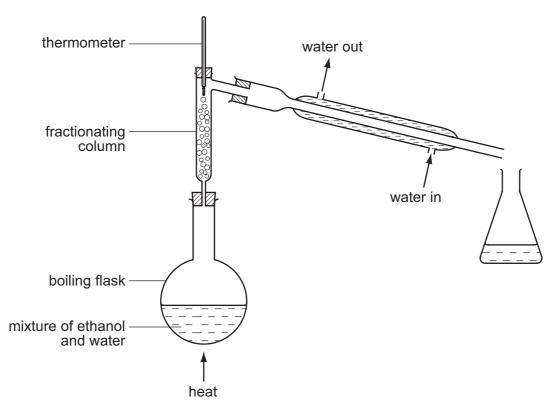
This document consists of 15 printed pages and 1 blank page.

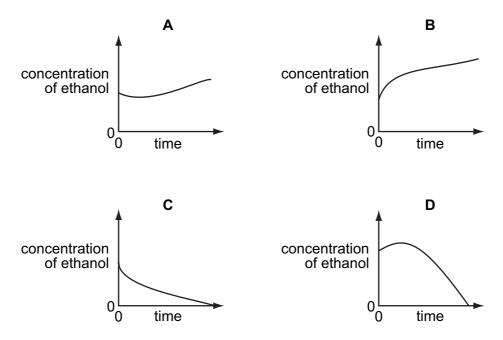


1 When drops of bromine are placed on a table-top at one side of a room, the smell of bromine can eventually be detected at the other side of the room.

What is not part of the explanation of this?

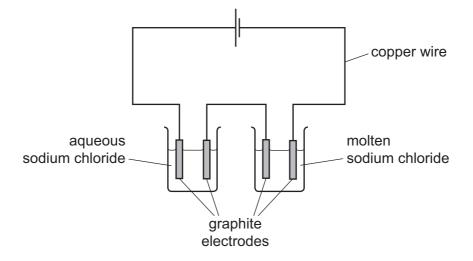
After evaporation, the bromine particles


- A collide with air particles.
- **B** move in a random way.
- **C** spread out to occupy the total available space.
- **D** vibrate from side to side.
- 2 Which elements exist as diatomic molecules at room temperature?
 - A hydrogen, oxygen, helium
 - B nitrogen, chlorine, neon
 - C nitrogen, oxygen, fluorine
 - **D** oxygen, chlorine, helium
- 3 The diagram shows the fractionation of crude oil.


Which statement is correct?

- **A** Each fraction consists of a single compound.
- **B** Fraction **P** has the highest boiling point.
- **C** The highest temperature is at the top of the column.
- **D** The naphtha fraction is used as feedstock for the chemical industry.

4 The apparatus shown is used to distil a dilute solution of ethanol in water. [B.P.: ethanol, 78°C; water 100°C]



Which graph shows the change in concentration of the ethanol in the boiling flask as the distillation proceeds?

3

5 The diagram shows the electrolysis of aqueous sodium chloride and of molten sodium chloride.

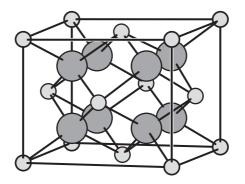
Which substance in the diagram has both positive ions and mobile electrons?

- A aqueous sodium chloride
- **B** copper wire
- **C** graphite electrodes
- D molten sodium chloride
- 6 Substance X has a simple molecular structure and substance Y has a giant molecular structure.

Which row is correct?

	X could be	Y could be	
Α	an element only	an element only	
в	an element only	an element or a compound	
С	an element or a compound	an element only	
D	an element or a compound	an element or a compound	

7 The table gives some of the properties of four substances.


Which substance could be hydrogen chloride?

	melting point	boiling point	ability to conduct electricity		
	/°C	/°C	when liquid	in aqueous solution	
Α	-114	-85	none	good	
в	-114	78	none	none	
С	180	218	none	(insoluble)	
D	808	1465	good	good	

What are the colours of the precipitates formed?

	colour of precipitate formed with chloride	colour of precipitate formed with iodide	
Α	white	white	
в	white	yellow	
С	yellow	white	
D	yellow	yellow	

9 The diagram shows the structure of an ionic compound.

What is a possible formula for this compound?

A CaF_2 B $NaCl$ C Sc	D ₂ D MgO
--	-----------------------------

- 10 18g of water contains the same number of molecules as
 - **A** 18 g of ammonia gas.
 - **B** 2g of hydrogen gas.
 - **C** 14 g of nitrogen gas.
 - **D** 16 g of oxygen gas.
- **11** The complete combustion of 20 cm³ of a gaseous alkane, **X**, requires 130 cm³ of oxygen. Both volumes were measured at r.t.p..

What could be the identity of **X**?

- A butane
- B ethane
- C methane
- D propane

- 12 Which process will separate an ionic compound PQ into its elements P and Q?
 - A distillation
 - **B** electrolysis
 - **C** filtration
 - D precipitation
- **13** Which statement describes the conversion of magnesium atoms to magnesium ions?
 - **A** The change is reduction, because there has been a gain of electrons.
 - **B** The change is oxidation, because there has been a loss of electrons.
 - **C** The change is reduction, because there has been a loss of electrons.
 - **D** The change is oxidation, because there has been a gain of electrons.
- 14 Which arrangement would be used to electroplate copper onto a steel key?

	electrolyte	anode (positive electrode)	cathode (negative electrode)	
Α	aqueous copper(II) sulfate	piece of pure copper	steel key	
в	aqueous copper(II) sulfate	steel key	piece of pure copper	
С	aqueous sulfuric acid	piece of pure copper	steel key	
D	aqueous sulfuric acid	steel key	piece of pure copper	

15 Sodium hydrogencarbonate decomposes on heating.

 $2NaHCO_3 \rightarrow Na_2CO_3 + H_2O + CO_2$

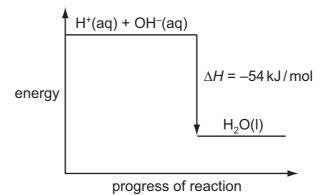
In an experiment, a 5.0 mol sample of sodium hydrogencarbonate is heated.

Which volume of carbon dioxide, measured at room temperature and pressure, is evolved?

16 It has been suggested that the cars of the future could be powered by fuel cells. One type of fuel cell uses the chemical reaction between oxygen and hydrogen to produce electricity.

What would be a disadvantage of using this type of fuel cell to power a car?

- **A** A car cannot be powered by electricity.
- **B** The hydrogen tank might split in an accident, leading to an explosion.
- **C** The product of the reaction between oxygen and hydrogen is toxic.
- **D** The oxygen would need to be obtained from air.


17 Sulfur and selenium, Se, are in the same group of the Periodic Table.

From this, we would expect selenium to form compounds having the formulae

- A Se₂O, Na₂Se and NaSeO₄.
- **B** SeO₂, Na₂Se and NaSeO₄.
- **C** SeO₂, Na₂Se and Na₂SeO₄.
- **D** SeO₃, NaSe and NaSeO₄.
- **18** When the product of a reaction between two gases is added to water, a solution of pH7 is formed.

Which could be these gases?

- A hydrogen and chlorine
- B hydrogen and nitrogen
- C hydrogen and oxygen
- **D** oxygen and carbon monoxide
- **19** The energy diagram for the reaction between aqueous sodium hydroxide and dilute hydrochloric acid is shown.

What can be deduced from the diagram?

- A The energy change when one mole of water is formed from its elements, hydrogen and oxygen, is 54 kJ/mol.
- **B** The OH^{-} ions have more energy than the H^{+} ions.
- **C** The products contain less energy than the reactants.
- **D** The reaction is endothermic.

- 20 Which change will not increase the rate of a chemical reaction?
 - A an increase in concentration of aqueous reactants
 - B an increase in pressure of gaseous reactants
 - C an increase in temperature of a reaction system
 - D an increase in the particle size of solid reactants
- 21 The metals iron, lead and zinc can be manufactured by the reduction of their oxides with coke.

What is the correct order of the ease of reduction of the metal oxides?

	oxides become more difficult to reduce			
Α	iron \rightarrow lead \rightarrow zinc			
в	iron \rightarrow zinc \rightarrow lead			
С	lead \rightarrow iron \rightarrow zinc			
D	zinc \rightarrow iron \rightarrow lead			

- **22** The following stages happen during eutrophication.
 - 1 increase in growth of algae
 - 2 increase in nitrate concentration
 - 3 death of aquatic plants
 - 4 decrease in dissolved oxygen

In which order do these stages occur?

- $\textbf{A} \quad 1 \rightarrow 2 \rightarrow 3 \rightarrow 4$
- $\textbf{B} \quad 1 \rightarrow 2 \rightarrow 4 \rightarrow 3$
- $\mathbf{C} \quad 2 \to 1 \to 3 \to 4$
- $\textbf{D} \quad 2 \rightarrow 1 \rightarrow 4 \rightarrow 3$

23 The equation shows that mixtures of hydrogen gas and iodine vapour can reach dynamic equilibrium.

$$H_2(g) + I_2(g) \rightleftharpoons 2HI(g)$$

Two students, X and Y, make statements about the equilibrium mixture.

- X Hydrogen iodide is continually being formed and decomposed.
- Y If more hydrogen is injected into the equilibrium mixture the equilibrium concentration of HI increases.

Which statements are correct?

- A both X and Y
- B X only
- C Y only
- D neither X nor Y
- 24 Aluminium is manufactured by the electrolysis of molten aluminium oxide.

Which gas is not formed during this process?

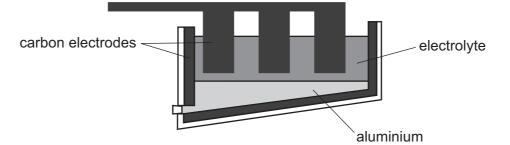
- A carbon dioxide
- B carbon monoxide
- C oxygen
- D sulfur dioxide
- 25 Which equation represents a redox reaction?
 - $\textbf{A} \quad 4CuO \ + \ CH_4 \ \rightarrow \ 4Cu \ + \ 2H_2O \ + \ CO_2$
 - $\textbf{B} \quad CuO \ + \ H_2SO_4 \ \rightarrow \ CuSO_4 \ + \ H_2O$
 - $\textbf{C} \quad CuCO_3 \rightarrow CuO + CO_2$
 - $\textbf{D} \quad \text{CuSO}_4 \ + \ 2\text{NaOH} \ \rightarrow \ \text{Cu}(\text{OH})_2 \ + \ \text{Na}_2\text{SO}_4$
- **26** What is the percentage, by mass, of nitrogen in the fertiliser (NH₄)₃PO₄? [*A*_r: H, 1; N, 14; O, 16; P, 31]

A 9.4% **B** 18.8% **C** 28.2% **D** 37.6%

27 In the Contact process for the manufacture of sulfuric acid, the most important reaction occurs in the catalyst chamber.

Which set of reactants and catalyst for this reaction is correct?

	reactants	catalyst		
Α	sulfur and oxygen	vanadium(V) oxide		
в	sulfur dioxide and air	vanadium(V) oxide		
С	sulfur dioxide and steam	iron		
D	sulfur trioxide and water	platinum		


- 28 Which compound is formed by a method involving precipitation?
 - A NaCl
 - $\textbf{B} \quad K_2SO_4$
 - **C** Ca(NO₃)₂
 - D PbSO₄
- **29** Ionic compounds have high melting points because of the strong attraction between oppositely charged ions.

Which compound has the lowest melting point?

- **A** $(Al^{3+})_2(O^{2-})_3$
- B Mg²⁺O²⁻
- **C** Na⁺C l^{-}
- **D** $(Fe^{3+})_2(O^{2-})_3$
- **30** In which row are the elements placed in the correct order of their chemical reactivity, starting with the most reactive element?

	most reactive		least reactive
Α	calcium	magnesium	silver
в	magnesium	calcium	silver
С	silver	calcium	magnesium
D	silver	magnesium	calcium

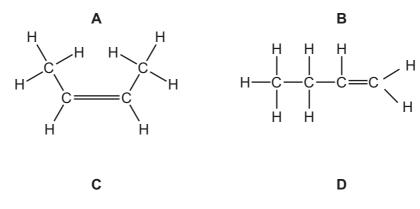
31 The diagram shows the apparatus needed to extract aluminium from aluminium oxide.

Which statement about this process is correct?

- **A** The electrolyte is a solid mixture of aluminium oxide and cryolite.
- **B** The electrolyte is aluminium oxide dissolved in water.
- **C** The equation for the reaction at the positive electrode is $Al^{3+} + 3e^- \rightarrow Al$.
- **D** The positive carbon electrodes lose mass during the process and need regular replacement.
- **32** Graphite shares some properties with metals.

Which property of graphite is not one of the general properties of metals?

- **A** Graphite forms a gaseous oxide.
- **B** Graphite has a high melting point.
- **C** Graphite is a conductor of electricity.
- **D** Graphite is a solid.
- **33** Which metallic element, represented by *X*, has the following characteristics?
 - It can be prevented from corroding by attaching a piece of magnesium to it.
 - Two of its oxides have the formulae XO and X_2O_3 .
 - It has the highest percentage by mass of all the metals present in stainless steel.
 - A Fe B Na C Pb D Zn
- **34** Which pair of gases are both non-acidic?
 - **A** ammonia and methane
 - B carbon dioxide and ammonia
 - **C** methane and nitrogen dioxide
 - D nitrogen dioxide and carbon dioxide

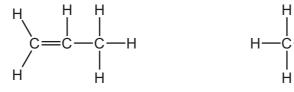

35 Both nylon and the proteins found in egg yolk are polymers.

Which statement about nylon and these proteins is correct?

- **A** They are both naturally occurring macromolecules.
- **B** They are both polyamides.
- **C** They both possess the -C O linkage.
- **D** They can both be hydrolysed to form amino acids.
- **36** An organic compound has an empirical formula C_2H_4O .

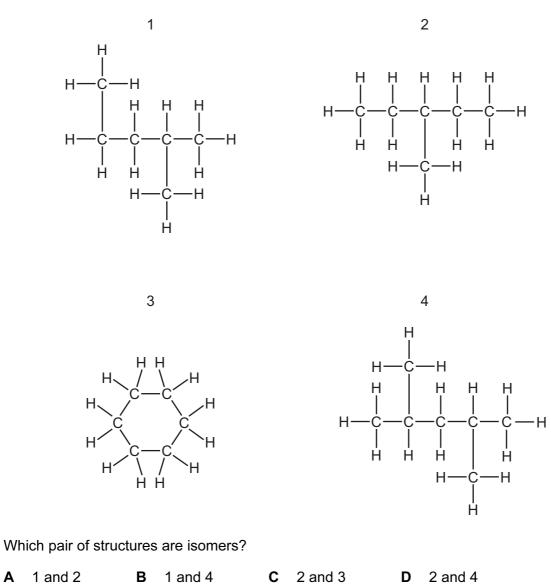
What could the compound be?

- A butanoic acid
- **B** butanol
- **C** ethanoic acid
- D ethanol
- 37 Which diagram shows the structure of the monomer of poly(propene)?

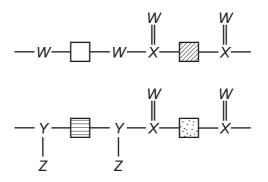

Н

Н

Н


н

-H


38 Alkanes are saturated compounds containing carbon and hydrogen only.

Structures 1, 2, 3 and 4 are saturated hydrocarbons.

- 39 Which pair of compounds are both esters and are isomers of each other?
 - A HCO₂CH₃ and CH₃CO₂H
 - **B** $CH_3CO_2CH_3$ and $C_2H_5CO_2H$
 - \boldsymbol{C} $CH_{3}CO_{2}C_{2}H_{5}$ and $C_{2}H_{5}CO_{2}CH_{3}$
 - \boldsymbol{D} $C_3H_7CO_2CH_3$ and $CH_3CO_2C_2H_5$

40 The diagram shows the partial structures of two different polymers.

Which chemical symbols should replace W, X, Y and Z?

	W	X	Y	Ζ
Α	С	Ν	Н	0
в	Ο	С	н	Ν
С	0	С	Ν	н
D	Ν	Н	0	С

BLANK PAGE

		0	4 Helium	20 Neon Argon	84 Krypton	131 Xe Xenon	Radon	175 Lutetium 71 Lawrencium 103
		_	5	9 10	36	54	86	
		١١٨		19 P Fluorine 35.5 C 1 C 17	80 Bromine 35	127 T lodine 53	At 85	T173 Yb Yo Nooelium 102
		7		16 Oxygen 32 Oxygen 32 Oxygen 16 Suffur 16 Suf	79 Selenium 34	128 Te ^{Tellurium} 52	Poonium 84	169 Thulium 69 Mendelevium 101
		>		14 Nitrogen 31 15 Phosphorus	75 AS Arsenic 33	122 Sb Antimony 51	209 Bismuth 83	167 Ectoluum 68 Fermium 100
		2		6 Carbon 6 Carbon 28 28 28 28 74 Silicon	73 Ge Germanium 32	119 Sn 50	207 Pb 82 Lead	_ E
		≡		11 B Boron 5 27 A1 Auminium 13	70 Ga Gallium 31	115 In Indium	204 T 1 Thallium 81	162 Dy Dysprosium 66 Cf Cf Cf Cf Cf Ortessture
nts					65 Zn 30 ^{Zinc}	112 Cd ^{Cadmium} 48	201 Hg ^{Mercury} 80	159 Tarbium 65 BR BR Berkelium 97 Urre and c
e Eleme					64 Cu Copper	108 Ag Silver	197 Au 2004 79	157 Gd Gadolinium 64 Cm Cm ⁶⁴ Curium
DATA SHEET The Periodic Table of the Elements	dn				59 Nickel 28	106 Pd Palladium 46	195 Pt Platinum 78	152 Eu e ^{acopium} 83 Americum 95 Americum
DATA odic Tat	Group				59 Co ^{Cobalt}	103 Rh Rhodium 45	192 Lr 77	150 Smartum 62 Putontum 94 Putontum 5 is 24 dm
The Peri			¹ Hydrogen		56 Iron Fe	101 Ru Ruthenium 44	190 Osmium 76	Promethum 61 Neptunum 03 anv das
Ш]	55 Manganese 25	Technetium	186 Re Rhenium 75	140 141 144 Pm 150 152 157 159 162 162 Ce Pr Nd Pm Sm Eu Gd Tb Dy Ho Paseodymium Neodymium Promentium Samarium Europium 64 Tb Dy Ho 232 238 U Np Pu Am Cm Bk Cf Erotium 232 238 U Np Pu Am Cm Bk Cf Estimation 232 233 Du Np Pu Am Cm Bk Cf Estimation 232 238 Np Pu Am Cm Bk Cf Estimation 233 Du Pu Pu Am Cm Bk Cf Estimation 233 Pa Pu Pu Am Cm Bk Cf Estimation 24 Pa 9 Pu Pu Am Pu Pu 15 Pa 9 Pu Pu Pu Pu Pu 16 Pa Pu Pu Pu Pu Pu Pu
					52 Chromium 24	96 Mo Molybdenum 42	184 V 74 74	141 Praseodymium 59 Protactinum 91 Octome of or
					51 Vanadium 23	93 Niobium 41	181 Ta Tantalum 73	140 58 Certum 58 Certum 7 7 7 7 7 8 7 8 7 8 7 8 7 7 7 7 8 7 8
					48 Titanium 22	91 Zr Zirconium 40	178 Hafnium 72	
				·	45 Scandium 21	89 Yttrium 39	139 La thanum * 227 Ac	89 1 bid series series a = relative atomic mass X = atomic symbol b = proton (atomic) number
		=		9 Beryllum 4 Magnesum 12	40 Calcium 20	88 Srontium 38	137 Barium 226 Ra	88 nthanoid ser a = r b = p
		_		23 Lithlum 3 Lithlum 3 23 23 23 23 23 23 23 23 23 23 23 23 2	39 Potassium 19		133 Cs iaesium Fr rancium	PLA

Permission to reproduce items where third-party owned material protected by copyright is included has been sought and cleared where possible. Every reasonable effort has been made by the publisher (UCLES) to trace copyright holders, but if any items requiring clearance have unwittingly been included, the publisher will be pleased to make amends at the earliest possible opportunity.

Cambridge International Examinations is part of the Cambridge Assessment Group. Cambridge Assessment is the brand name of University of Cambridge Local Examinations Syndicate (UCLES), which is itself a department of the University of Cambridge.