

Cambridge International Examinations

Cambridge Ordinary Level

CANDIDATE NAME				
CENTRE NUMBER		CANDIDATE NUMBER		

CHEMISTRY 5070/32

Paper 3 Practical Test

October/November 2015

1 hour 30 minutes

Candidates answer on the Question Paper.

Additional Materials: As listed in the Confidential Instructions

READ THESE INSTRUCTIONS FIRST

Write your Centre number, candidate number and name on all the work you hand in.

Write in dark blue or black pen.

You may use an HB pencil for any diagrams or graphs.

Do not use staples, paper clips, glue or correction fluid.

DO NOT WRITE IN ANY BARCODES.

Answer all questions.

Electronic calculators may be used.

Qualitative Analysis Notes are printed on page 8.

You should show the essential steps in any calculations and record experimental results in the spaces provided on the Question Paper.

At the end of the examination, fasten all your work securely together.

The number of marks is given in brackets [] at the end of each question or part question.

For Examiner's Use		
1		
2		
Total		

This document consists of 6 printed pages and 2 blank pages.

1 Milk of magnesia is a suspension of insoluble magnesium hydroxide in water. It is taken by people who have stomach pain caused by indigestion and works by neutralising acid in the stomach.

P is an aqueous solution of volume 110 cm³ prepared by reacting 10.0 cm³ of milk of magnesia with an excess of hydrochloric acid, HC*l*. In preparing **P**, all the magnesium hydroxide in the 10.0 cm³ of suspension reacted when it was added to 100 cm³ of 1.00 mol/dm³ hydrochloric acid, an excess.

$$Mg(OH)_2 + 2HCl \rightarrow MgCl_2 + 2H_2O$$

You are to determine by titration the amount of acid remaining in P.

Q is 0.527 mol/dm³ sodium hydroxide, NaOH.

(a) Put P into the burette.

Pipette a $25.0\,\mathrm{cm^3}$ (or $20.0\,\mathrm{cm^3}$) portion of **Q** into a flask and titrate with **P**, using the indicator provided.

Record your results in the table, repeating the titration as many times as you consider necessary to achieve consistent results.

Results

Burette readings

titration number	1	2	
final reading / cm ³			
initial reading / cm ³			
volume of P used / cm ³			
best titration results (✓)			

Summary

Tick (\checkmark) the best titration results.

Volume of **Q** used wascm³.

[12]

(b)	Q is 0.527 mol/dm ³ sodium hydroxide, NaOH.
	Calculate the number of moles of sodium hydroxide in the volume of Q used.
	mades of codium budgevide in the values of O yeard
	moles of sodium hydroxide in the volume of Q used[1]
(c)	Using the equation shown and your answer to (b) , deduce the number of moles of hydrochloric acid that reacted with the volume of Q used.
	NaOH + HC $l \rightarrow$ NaC $l + H_2O$
	moles of hydrochloric acid that reacted with the volume of Q used[1]
(d)	Using your answer to (c) and the average volume of P from the titration results, calculate the number of moles of hydrochloric acid in 110 cm ³ of P .
	moles of hydrochloric acid in 110 cm ³ of P [1]
(e)	Calculate the number of moles of hydrochloric acid in 100 cm ³ of 1.00 mol/dm ³ hydrochloric acid.
	moles of hydrochloric acid in 100 cm ³ of 1.00 mol/dm ³ hydrochloric acid[1]
(f)	Using your answers from (d) and (e) , calculate the number of moles of hydrochloric acid that reacted with the magnesium hydroxide in the milk of magnesia.
	moles of hydrochloric acid that reacted with magnesium hydroxide[1]
(g)	Using your answer to (f) , calculate the concentration of magnesium hydroxide in milk of magnesia in g/dm^3 . The relative formula mass of magnesium hydroxide is 58.
	concentration of magnesium hydroxide in milk of magnesia
	[Total: 19]

- 2 You are provided with solution **R** and solid **S**.
 - (a) Carry out the following tests and record your observations in the table. You should test and name any gas evolved.

test no.	test	observations
1	(a) To 1 cm depth of R in a test-tube, add an equal volume of aqueous barium nitrate.	
	(b) Add dilute nitric acid to the mixture from (a).	
2	(a) To 2 cm depth of R in a test-tube, add a piece of magnesium ribbon.	
	(b) To the mixture from (a) when the reaction has finished, add aqueous sodium hydroxide until no further change occurs.	
3	To 2 cm depth of R in a boiling tube, add a small amount of S . Warm this mixture until all the solid disappears.	
	Keep this solution for use in tests 4 and 5.	
4	To 1 cm depth of the solution from test 3 in a test-tube, add aqueous ammonia until no further change occurs.	

5	(a)	To 1 cm depth of the solution from test 3 in a test-tube, add an equal volume of aqueous potassium iodide.	
	(b)	To the mixture from (a) , add a small amount of solid sodium sulfite.	
6	(a)	To 1 cm depth of aqueous hydrogen peroxide in a test-tube, add a small amount of S .	
	(b)	Add aqueous ammonia to the mixture from (a).	
			[19]
(b)	Concl	usions	
	Identif	y the compound in solution R .	
	Solutio	on R contains	

[Total: 21]

[2]

© UCLES 2015 5070/32/O/N/15

Identify the cation in solid **S**.

The cation in solid **S** is

BLANK PAGE

7

BLANK PAGE

QUALITATIVE ANALYSIS NOTES

Tests for anions

anion	test	test result
carbonate (CO ₃ ²⁻)	add dilute acid	effervescence, carbon dioxide produced
chloride (C <i>l</i> ⁻) [in solution]	acidify with dilute nitric acid, then add aqueous silver nitrate	white ppt.
iodide (I ⁻) [in solution]	acidify with dilute nitric acid, then add aqueous silver nitrate	yellow ppt.
nitrate (NO ₃ ⁻) [in solution]	add aqueous sodium hydroxide then aluminium foil; warm carefully	ammonia produced
sulfate (SO ₄ ²⁻) [in solution]	acidify with dilute nitric acid, then add aqueous barium nitrate	white ppt.

Tests for aqueous cations

cation	effect of aqueous sodium hydroxide	effect of aqueous ammonia	
aluminium (A l^{3+}) white ppt., soluble in excess giving a colourless solution		white ppt., insoluble in excess	
ammonium (NH ₄ ⁺)	ammonia produced on warming	_	
calcium (Ca ²⁺)	white ppt., insoluble in excess	no ppt., or very slight white ppt.	
copper(II) (Cu ²⁺)	light blue ppt., insoluble in excess	light blue ppt., soluble in excess giving a dark blue solution	
iron(II) (Fe ²⁺)	green ppt., insoluble in excess	green ppt., insoluble in excess	
iron(III) (Fe ³⁺)	red-brown ppt., insoluble in excess	red-brown ppt., insoluble in excess	
zinc (Zn ²⁺)	white ppt., soluble in excess giving a colourless solution	white ppt., soluble in excess giving a colourless solution	

Tests for gases

gas	test and test result
ammonia (NH ₃)	turns damp red litmus paper blue
carbon dioxide (CO ₂)	turns limewater milky
chlorine (Cl ₂)	bleaches damp litmus paper
hydrogen (H ₂)	'pops' with a lighted splint
oxygen (O ₂)	relights a glowing splint
sulfur dioxide (SO ₂)	turns aqueous acidified potassium manganate(VII) from purple to colourless

Permission to reproduce items where third-party owned material protected by copyright is included has been sought and cleared where possible. Every reasonable effort has been made by the publisher (UCLES) to trace copyright holders, but if any items requiring clearance have unwittingly been included, the publisher will be pleased to make amends at the earliest possible opportunity.

To avoid the issue of disclosure of answer-related information to candidates, all copyright acknowledgements are reproduced online in the Cambridge International Examinations Copyright Acknowledgements Booklet. This is produced for each series of examinations and is freely available to download at www.cie.org.uk after the live examination series.

Cambridge International Examinations is part of the Cambridge Assessment Group. Cambridge Assessment is the brand name of University of Cambridge Local Examinations Syndicate (UCLES), which is itself a department of the University of Cambridge.