

Cambridge International Examinations

Cambridge Ordinary Level

CHEMISTRY 5070/12

Paper 1 Multiple Choice October/November 2017

1 hour

Additional Materials: Multiple Choice Answer Sheet

Soft clean eraser

Soft pencil (type B or HB recommended)

READ THESE INSTRUCTIONS FIRST

Write in soft pencil.

Do not use staples, paper clips, glue or correction fluid.

Write your name, Centre number and candidate number on the Answer Sheet in the spaces provided unless this has been done for you.

DO NOT WRITE IN ANY BARCODES.

There are **forty** questions on this paper. Answer **all** questions. For each question there are four possible answers **A**, **B**, **C** and **D**.

Choose the **one** you consider correct and record your choice in **soft pencil** on the separate Answer Sheet.

Read the instructions on the Answer Sheet very carefully.

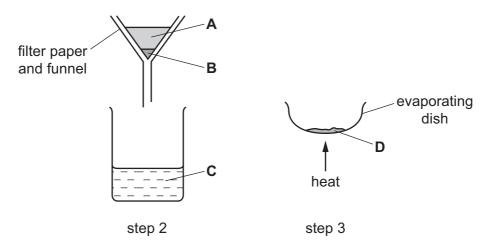
Each correct answer will score one mark. A mark will not be deducted for a wrong answer.

Any rough working should be done in this booklet.

A copy of the Periodic Table is printed on page 16.

Electronic calculators may be used.

International Examinations


CAMBRIDGE

1 A mixture of sand and sodium chloride can be separated in three steps.

Step 1 is to add water to the mixture.

The diagram shows step 2 and step 3.

Where is pure sodium chloride collected?

2 The results of two tests on solution **X** are shown.

reagent added	observation on adding a few drops of reagent	observation on adding an excess of reagent				
aqueous sodium hydroxide	white precipitate	precipitate dissolves				
aqueous ammonia	white precipitate	precipitate remains				

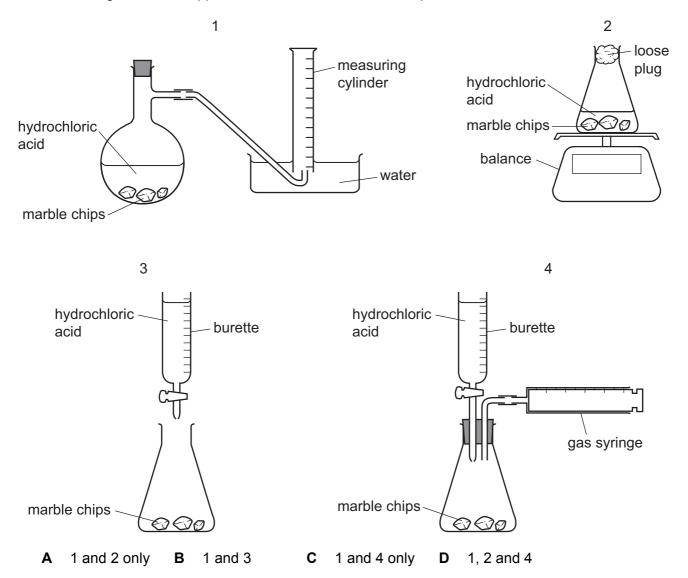
Which ion is present in solution **X**?

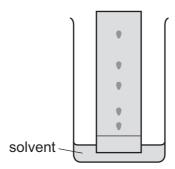
A Al^{3+}

B Ca²⁺

C Cu²⁺

 \mathbf{D} Zn²⁺


Which diagram shows the arrangement of particles inside a balloon containing a mixture of the gases nitrogen and oxygen?


4 A student follows the rate of the reaction between marble chips, CaCO₃, and dilute hydrochloric acid.

$$CaCO_3 + 2HC1 \rightarrow CaC1_2 + CO_2 + H_2O$$

Which diagrams show apparatus that is suitable for this experiment?

5 A chemist wishes to separate and identify a mixture of substances using paper chromatography. The diagram shows the apparatus used. The solvent is water.

The solvent front is allowed to reach the top of the paper before the chemist removes the paper from the solvent.

Which problem does this cause?

- A This causes the spot nearest the bottom of the paper to catch up with the spot above it.
- **B** This makes it impossible to calculate R_f values.
- C This makes it impossible to use a locating agent.
- **D** This results in a safety hazard caused by solvent fumes.
- **6** Which particle contains the same number of both neutrons and electrons?
 - **A** 40 Ca²⁺
- **B** $^{24}_{12}\text{Mg}^2$
- **C** 19/9 F
- $D = {}^{32}_{16}S^{2}$

- 7 Which statement is correct for all metals?
 - **A** They are hard and brittle.
 - **B** They are made up of a lattice of positive and negative ions.
 - **C** They conduct electricity by movement of electrons.
 - **D** They conduct electricity by movement of ions.

8 X represents the element of atomic number 8 and Y represents the element of atomic number 19.

The two elements react together to form a compound.

Which row is correct for the compound formed?

	formula	type of bonding
Α	Y_2X	covalent
В	Y_2X	ionic
С	X_2Y	covalent
D	X_2Y	ionic

9 The empirical formula of a liquid compound is C₂H₄O.

To find the empirical formula, it is necessary to know

- A the density of the compound.
- **B** the percentage composition by mass of the compound.
- **C** the relative molecular mass of the compound.
- **D** the volume occupied by 1 mole of the compound.

10 25.0 g of hydrated copper(II) sulfate crystals are heated to produce anhydrous copper(II) sulfate and water vapour.

$$CuSO_4.5H_2O(s) \rightarrow CuSO_4(s) + 5H_2O(g)$$

What is the mass of anhydrous copper(II) sulfate formed? $[M_r: CuSO_4, 160; H_2O, 18]$

- **A** 9.0 g
- **B** 16.0 g
- **C** 22.5 g
- **D** 25.0 g

11 Which sample contains the most atoms?

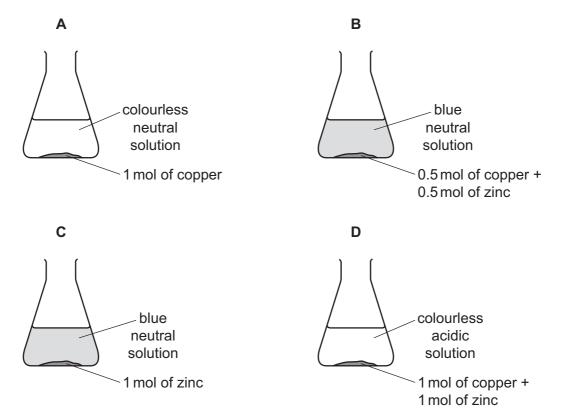
- A 0.5 moles of water
- **B** 1.0 moles of carbon dioxide
- C 1.0 moles of methane
- **D** 2.0 moles of hydrogen chloride

12 The relative atomic mass of chlorine is 35.5.

What is the mass of 2 moles of chlorine gas?

- **A** 17.75 g
- **B** 35.5 g
- **C** 71g
- **D** 142 g

13 One mole of an organic compound, **Q**, is completely burnt in oxygen and produces exactly three moles of water.


Which compound is **Q**?

- **A** butane, C₄H₁₀
- **B** ethanol, C₂H₅OH
- C propane, C₃H₈
- **D** propanol, C₃H₇OH
- 14 In an experiment, 1 mol of powdered copper and 1 mol of powdered zinc are placed in a flask.

Dilute acid, containing 1 mol of acid, is added to the flask.

The flask is left until all the reactions, if any, are complete.

Which diagram shows the result of the experiment?

15 A simple cell can be made using two different metals as the electrodes and an aqueous solution as the electrolyte.

Which statements about simple cells are correct?

- 1 A greater voltage is produced using magnesium and silver than using magnesium and copper.
- 2 The electrolyte is an aqueous solution containing both positive and negative ions.
- 3 The more reactive metal will release electrons.
- **A** 1, 2 and 3
- **B** 1 and 3 only
- C 1 only
- **D** 2 and 3 only
- **16** Magnesium can be produced by electrolysis of molten magnesium chloride, $MgCl_2$.

What are the equations for the reactions that occur at the positive electrode and at the negative electrode?

	positive electrode	negative electrode
Α	$2Cl^- \rightarrow Cl_2 + 2e^-$	$2H^{^{+}} + 2e^{-} \rightarrow H_{2}$
В	$Cl_2 + 2e^- \rightarrow 2Cl^-$	Mg^{2^+} + $2\mathrm{e}^- \to \mathrm{Mg}$
С	$2Cl^- \rightarrow Cl_2 + 2e^-$	Mg^{2^+} + $2\mathrm{e}^- \to \mathrm{Mg}$
D	$2Cl^- \rightarrow Cl_2 + 2e^-$	$Mg^{2+} + 2e^{-} \rightarrow 2Mg$

17 Three different solutions were electrolysed using inert electrodes.

solution 1 aqueous sodium chloride

solution 2 concentrated hydrochloric acid

solution 3 dilute sulfuric acid

Which solutions produce hydrogen at the negative electrode?

- **A** 1, 2 and 3
- **B** 1 and 2 only
- C 1 only
- **D** 2 and 3 only
- **18** Compound Y reacts with oxygen. This reaction has a positive enthalpy change of reaction, ΔH .

What information can be deduced about **Y** and its reaction with oxygen?

- A Compound Y can be used as a fuel.
- **B** Compound **Y** could be a hydrocarbon.
- **C** In the reaction the energy needed to break bonds is greater than the energy released when bonds are made.
- **D** In the reaction the products are at a lower energy level than the reactants.

19 The formation of liquid water from hydrogen and oxygen may occur in three stages.

1
$$2H_2(g) + O_2(g) \rightarrow 4H(g) + 2O(g)$$

2
$$4H(g) + 2O(g) \rightarrow 2H_2O(g)$$

$$3 \quad 2H_2O(g) \rightarrow 2H_2O(I)$$

Which stages are endothermic?

- **A** 1, 2 and 3
- **B** 1 only
- C 2 only D 3 only

20 Sulfur trioxide is produced by the following reaction.

$$2SO_2(g) + O_2(g) \rightleftharpoons 2SO_3(g)$$
 $\Delta H = -195 \text{ kJ}$

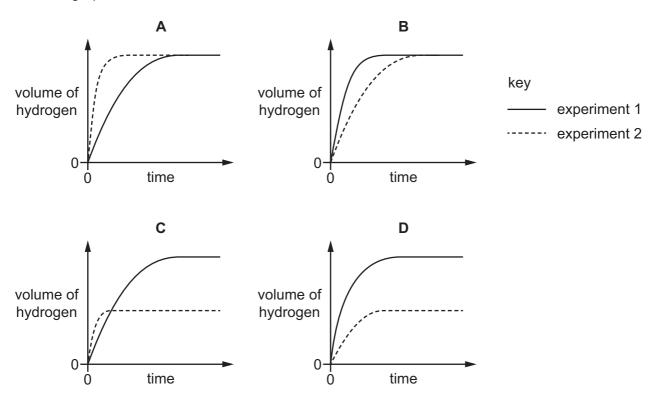
Which change in conditions would produce a greater amount of SO₃ at equilibrium?

- A adding a catalyst
- **B** increasing the pressure
- **C** increasing the temperature
- **D** removing some SO₂ and O₂

© UCLES 2017

21 Magnesium reacts with dilute sulfuric acid.

$$Mg(s) + H_2SO_4(aq) \rightarrow MgSO_4(aq) + H_2(g)$$


Two experiments were carried out.

experiment 1 24.0 g of magnesium was reacted with 100 cm³ of 1.0 mol/dm³ sulfuric acid.

experiment 2 24.0 g of magnesium was reacted with 50 cm³ of 2.0 mol/dm³ sulfuric acid.

In each experiment the volume of hydrogen was measured at various times. The results were plotted on a graph.

Which graph is correct?

- 22 Which statement is correct for both aluminium and iron?
 - A Both form 2+ ions.
 - **B** Both have amphoteric oxides.
 - **C** The manufacture of both metals involves the reduction of the metal ions.
 - **D** They are both normally manufactured by electrolysis.

23 A household cleaning compound is used to remove calcium carbonate from bathroom surfaces.

The compound reacts with the calcium carbonate to form a soluble salt, carbon dioxide and water.

What is the pH of this cleaning compound?

A pH 2

B pH 7

C pH 10

D pH 14

24 Dilute hydrochloric acid is added separately to samples of copper, copper(II) oxide and copper(II) carbonate.

Which row correctly shows whether copper(II) chloride is produced?

	Cu	CuO	CuCO ₃
Α	✓	✓	✓
В	X	✓	X
С	✓	X	✓
D	X	✓	✓

kev

√ = copper(II) chloride produced

x = copper(II) chloride not produced

- **25** Which ions are present when hydrochloric acid has exactly neutralised aqueous sodium hydroxide?
 - **A** Na⁺, C l^- , H⁺ and OH⁻
 - **B** Na $^{+}$, C l^{-} and H $^{+}$ only
 - **C** Na⁺ and C l^- only
 - **D** H⁺ and OH⁻ only
- 26 Which experiment will result in the formation of a white precipitate?
 - A aqueous barium nitrate added to aqueous sodium chloride
 - B aqueous sodium carbonate added to aqueous calcium chloride
 - **C** carbon dioxide passed through aqueous potassium chloride
 - **D** dilute hydrochloric acid added to aqueous ammonia
- 27 Which statement about both the Group I and Group VII elements is correct?
 - **A** They conduct electricity when molten.
 - **B** They form covalent compounds when bonded to non-metals.
 - **C** They exist as diatomic molecules.
 - **D** When Group I elements combine with Group VII elements, ionic compounds form.

28 The elements helium, argon and neon are noble gases.

Which statement is correct?

- A All these elements have eight electrons in their outer shell.
- **B** Argon is used to react with impurities in the manufacture of steel.
- C Helium is used in balloons as it is more dense than air.
- **D** Neon is used in light bulbs to give an inert atmosphere.
- **29** Which row shows the correct catalyst for each industrial process?

	manufacture of sulfuric acid	manufacture of ammonia	manufacture of margarine
Α	nickel	iron	vanadium(V) oxide
В	nickel	$vanadium(V) \ oxide \\$	iron
С	vanadium(V) oxide	iron	nickel
D	vanadium(V) oxide	nickel	iron

30 In the solid state, germanium has the same structure as diamond.

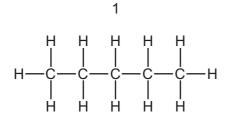
What is the likely melting point of germanium?

- A above 800 °C
- **B** between 100 °C and 800 °C
- **C** 100 °C
- **D** below 100 °C
- 31 Aluminium is a metal that is often used to make caps for bottles. When thrown away and buried in the soil, the caps do not corrode.

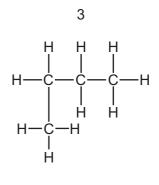
Why is this?

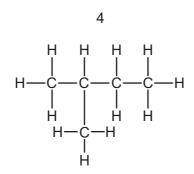
- A Aluminium does not react with acids.
- **B** Aluminium does not react with alkalis.
- **C** Aluminium is alloyed with other metals.
- **D** Aluminium is protected by a layer of oxide.

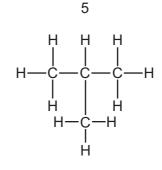
- 32 Which statement about Group I metals is correct?
 - **A** They are hard compared with most other metals.
 - **B** They form coloured compounds.
 - **C** They have high densities compared with most other metals.
 - **D** They only form ions with a charge of +1.
- **33** CFC compounds were used as aerosol propellants. The structure of one CFC compound is shown.


Which element in this compound causes a depletion of ozone in the atmosphere?

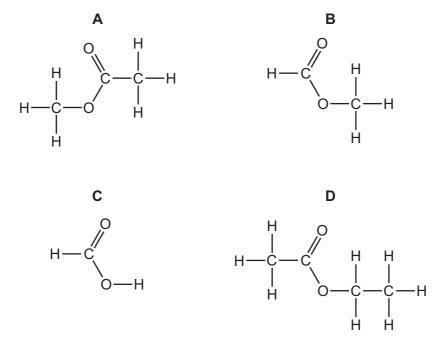
- A carbon
- **B** chlorine
- **C** fluorine
- **D** hydrogen
- **34** Dry air is a mixture of gases of which 99% is nitrogen and oxygen.


What is the main constituent of the remaining 1%?


- A argon
- **B** helium
- C hydrogen
- **D** water vapour
- **35** Why is chlorine added to the water supply?
 - A Chlorine is used to desalinate the water.
 - **B** Chlorine kills bacteria that may be present in the water.
 - **C** Chlorine precipitates solids that may be present in the water.
 - **D** Chlorine removes tastes and odours from the water.


- 36 When the alcohol of molecular formula $C_4H_{10}O$ is oxidised, what is the molecular formula of the acid formed?
 - **A** $C_4H_{12}O_2$
- **B** C₄H₁₀O₂
- \mathbf{C} $C_4H_8O_2$
- \mathbf{D} $C_4H_6O_2$
- **37** The diagrams show the structures of five hydrocarbons.

2



Which three hydrocarbons are isomers of each other?

- **A** 1, 2 and 4
- **B** 2, 3 and 5
- C 2, 3 and 4
- **D** 3, 4 and 5
- 38 Which alcohol and acid will react together to make the ester CH₃COOC₂H₅?
 - A CH₃OH and CH₃COOH
 - **B** CH₃OH and C₂H₅COOH
 - C C₂H₅OH and CH₃COOH
 - **D** C₂H₅OH and C₂H₅COOH

39 Which compound has a pH of less than 7 in aqueous solution?

- **40** Which statement about polymers is correct?
 - A Nylon and *Terylene* are produced by addition polymerisation.
 - **B** Nylon and *Terylene* both contain the amide linkage.
 - **C** Simple sugars can be produced by hydrolysing proteins.
 - **D** Starch contains the elements carbon, hydrogen and oxygen.

BLANK PAGE

Permission to reproduce items where third-party owned material protected by copyright is included has been sought and cleared where possible. Every reasonable effort has been made by the publisher (UCLES) to trace copyright holders, but if any items requiring clearance have unwittingly been included, the publisher will be pleased to make amends at the earliest possible opportunity.

To avoid the issue of disclosure of answer-related information to candidates, all copyright acknowledgements are reproduced online in the Cambridge International Examinations Copyright Acknowledgements Booklet. This is produced for each series of examinations and is freely available to download at www.cie.org.uk after the live examination series.

Cambridge International Examinations is part of the Cambridge Assessment Group. Cambridge Assessment is the brand name of University of Cambridge Local Examinations Syndicate (UCLES), which is itself a department of the University of Cambridge.

The Periodic Table of Elements

	=	² He	helium 4	10	Ne	neon 20	18	Ā	argon 40	36	첫	krypton 84	54	Xe	xenon 131	98	R	radon																				
	=			6	ட	fluorine 19	17	Cl	chlorine 35.5	35	ğ	bromine 80	53	Н	iodine 127	85	Ą	astatine -																				
	>			8	0	oxygen 16	16	ഗ	sulfur 32	34	Se	selenium 79	52	<u>a</u>	tellurium 128	84	Ъ	molod –	116	^	livemorium -																	
	>			7	Z	nitrogen 14	15	₾	phosphorus 31	33	As	arsenic 75	51	Sp	antimony 122	83	<u>.</u>	bismuth 209																				
	≥			9	ပ	carbon 12	14	S	silicon 28	32	Ge	germanium 73	20	Sn	tin 119	82	Pb	lead 207	114	Εl	flerovium																	
	≡			2	മ	boron 11	13	Νſ	aluminium 27	31	Ga	gallium 70	49	In	indium 115	81	lΤ	thallium 204																				
										30	Zu	zinc 65	48	ဥ	cadmium 112	80	βĤ	mercury 201	112	S	copernicium -																	
										29	Cn	copper 64	47	Ag	silver 108	62	Au	gold 197	111	Rg	roentgenium																	
Group	-																										28	z	nickel 59	46	Pd	palladium 106	78	귙	platinum 195	110	Ds	darmstadtium -
) J														27	ဝိ	cobalt 59	45	格	rhodium 103	22	Ι	iridium 192	109	M	meitnerium -													
		- I	hydrogen 1											Ru	ruthenium 101	9/	Os	osmium 190	108	Hs	hassium -																	
										25	Mn	manganese 55	43	ည	technetium -	75	Re	rhenium 186	107	Bh	bohrium —																	
					lod	ass						chromium 52		Mo	molybdenum 96	74	≥	tungsten 184	106	Sg	seaborgium -																	
			Key	atomic number	atomic symbo	name relative atomic mass				23	>	vanadium 51	41	q	niobium 93	73	<u>n</u>	tantalum 181	105	Ср	dubnium —																	
					ato	rela				22	j	titanium 48	40	Zr	zirconium 91	72	士	hafnium 178	104	껖	rutherfordium -																	
										21	Sc	scandium 45	39	>	yttrium 89	57–71	lanthanoids		89–103	actinoids																		
	=			4	Be	beryllium 9	12	Mg	magnesium 24	20	Ca	calcium 40	38	Š	strontium 88	56	Ва	barium 137	88	Ra	radium																	
	_			8	<u>'</u>	lithium 7	7	Na	sodium 23	19	¥	potassium 39	37	Rb	rubidium 85	55	Cs	caesium 133	87	Ŧ	francium -																	

Lu Lu	lutetium 175	103	۲	lawrencium	1
°° X	ytterbium 173	102	%	nobelium	_
e9 Tm	thulium 169	101	Md	mendelevium	1
₈₈ <u>п</u>	erbium 167	100	Fm	ferminm	ı
67 H	holmium 165	66	Es	einsteinium	-
» Q	dysprosium 163	86	ర	californium	ı
es Tb	terbium 159	26	益	berkelium	-
64 Gd	gadolinium 157	96	Cm	curium	I
e3 Eu	europium 152	92	Am	americium	ı
Sm	samarium 150	94	Pu	plutonium	I
e1 Pm	promethium —	93	dN	neptunium	ı
[©] 2	neodymium 144	92	\supset	uranium	238
59 P	praseodymium 141	91	Ра	protactinium	231
Ce SS	cerium 140	06	H	thorium	232
57 La	lanthanum 139	68	Ac	actinium	ı

lanthanoids

actinoids

The volume of one mole of any gas is 24 dm3 at room temperature and pressure (r.t.p.).