GCE Advanced Level

MARK SCHEME for the June 2005 question paper

9701 CHEMISTRY

9701/04

Paper 4 (Structured Questions A2 Core), maximum raw mark 60

This mark scheme is published as an aid to teachers and students, to indicate the requirements of the examination. It shows the basis on which Examiners were initially instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began. Any substantial changes to the mark scheme that arose from these discussions will be recorded in the published *Report on the Examination*.

All Examiners are instructed that alternative correct answers and unexpected approaches in candidates' scripts must be given marks that fairly reflect the relevant knowledge and skills demonstrated.

Mark schemes must be read in conjunction with the question papers and the *Report on the Examination*.

• CIE will not enter into discussion or correspondence in connection with these mark schemes.

CIE is publishing the mark schemes for the June 2005 question papers for most IGCSE and GCE Advanced Level and Advanced Subsidiary Level syllabuses and some Ordinary Level syllabuses.

Grade thresholds for Syllabus 9701 (Chemistry) in the June 2005 examination.

	maximum	minimum mark required for grade:					
	mark available	А	В	E			
Component 4	60	45	40	22			

The thresholds (minimum marks) for Grades C and D are normally set by dividing the mark range between the B and the E thresholds into three. For example, if the difference between the B and the E threshold is 24 marks, the C threshold is set 8 marks below the B threshold and the D threshold is set another 8 marks down. If dividing the interval by three results in a fraction of a mark, then the threshold is normally rounded down.

June 2005

GCE A LEVEL

MARK SCHEME

MAXIMUM MARK: 60

SYLLABUS/COMPONENT: 9701/04

CHEMISTRY Paper 4 (Structured Questions A2 Core)

Page 1			Mark Scheme	Syllabus	Paper	
			A LEVEL – JUNE 2005	9701	4	
1	(a)	(i)	Ammeter/galvanometer		[1]	
			Clock/watch/timer (or rheostat) (For items above 2 in number, e.g. voltmeter, penalise [1])			
		(ii)	Diagram to show ammeter (allow symbol) in circuit complete circuit with ⊖ terminal of power pack con	, and nected to Lł	[1] H	
			electrode		[1]	
		(iii)	Volume/amount of hydrogen/gas		[1]	
			Time			
			Current/amps/ammeter reading (ignore extra measurements)		[1]	
				Par	t (a): [7]	
	(b)	(i)	F = L x e		[1]	
		(ii)	L = 9.63 x $10^4/1.6 \times 10^{-19}$ = 6.02 x 10^{23} (must show	working)	[1]	
			Allow 6.0 but not 6 or 6.01	Par	t (b): [2]	
				т	otal: [9]	
2	(a)		The power/index/exponent to which a concentra a rate equation	tion term is	raised in	
			or ^a in rate = $\mathbf{k}[A]^a$ (k is needed – or can use rate α	[A] ^a)	[1]	
				Par	t (a): [1]	
	(b)	(i)	1 st order w.r.t. propanone		[1]	
			Zero order w.r.t. H^+ ions		[1]	
			1 st order w.r.t. CN⁻ ions		[1]	
		(ii)	Rate = k [propanone][CN ⁻] (e.c.	f. from (i))	[1]	
		(iii)	Mechanism B (or A – see grid below), with the first see grid below) step being the slow step,	t (or second	- [1]	
			(since H ⁺ does not appear in rate equation) it must after the slow step or [H ⁺] is not involved in slow st	be involved tep	[1]	
			Grid for e.c.f. in first mark of (iii)			
				ana in /!!!)		

Deduct	ons in (i) or	(ii)	E.C.F. deductions in (iii)		
[Propanone]	[CN ⁻]	[H⁺]	Mechanism	Slow step	
1 1		0	В	1 st	
1 0 1		A	1 st		
1	1	1	A or B	2 nd	
Any other			No e.c.f. mark can be awarded		

Part (b): [6]

Р	age 2		Mark Scheme	Syllabus	Paper
			A LEVEL – JUNE 2005	9701	4
3	(a)	(i)	It is an endothermic reaction, or taking in heat		[1]
			It has a high activation energy/E _a		[1]
		(ii)	MgCO ₃ will decompose at a lower temperature/ne	eds less en	ergy [1]
			Mg ²⁺ is a smaller (ion) than Ca ²⁺ or Mg ²⁺ has high o	charge dens	sity [1]
			So polarises/distorts the anion CO ₃ ²⁻ ion more easi [<i>or</i> LE(MgO) > LE(CaO)]	ly	[1]
				Par	t (a): [5]
	(b)		∆H = 82 – 178 = -96 (kJ mol ⁻¹)		[1]
				Par	t (b): [1]
	(c)		$[CaMg(CO_3)_2 \longrightarrow CaO + MgO + 2CO_2]$		
			M _r (CaMg(CO ₃) ₂) = 40.1 + 24.3 + 24 + 96 = 184.4		[1]
			M _r (2CO ₂) = 2 x 44 = 88		
			∴% loss in mass = 100 x $\frac{88}{184.4}$ = 47.7% (e.c.	f. in 184.4)	[1]
			Allow 48%. Also allow 48.8% if $M_r = 184$	Par	t (c): [2]

Total: [8]

Page 3			Syllabus	Paper			
			A LEVEL – JUNE 2005	9701	4		
	(-)		1-20-20-60-20-60-64-2 [4-1 2-64-2		[4]		
4	(a)	(1)	1s-2s-2p-3s-3p-3d-4s- or [Ar] 3d-4s-		[1]		
		(ii)	Coloured compounds/ions/solutions/ppts; paramag oxidation state/valency/more than one ion; dense n melting point metals; are catalysts; form complexes	netic; varial netals; high s (ANY 2)	ole [1] + [1]		
				Par	t (a): [3]		
	(b)	(i)	$MnO_4^- + 8H^+ + 5Fe^{2+} \rightarrow Mn^{2+} + 4H_2O + 5Fe^{3+}$		[1]		
			E ^e = 1.52 – 0.77 = 0.75V (allow e.c.f. 0.90V for Mn	O ₂	[1]		
		(ii)	MnO ₄ ⁻ is purple/ highly coloured		[1]		
			End point is first (permanent) pink colour or colour (Allow yellow-to-pink but not purple-to-pink)	less-to-pink	[1]		
				Part	: (b): [4]		
	(c)		Water molecules are ligands, in that they coordinate/form dative bo (to the Fe ion) with their (lone) pairs of electrons or lone				
			pairs are donated.		[1]		
			A complex ion is an ion/Fe ³⁺ surrounded by/joined $[Fe(H_2O)_6]^{3+}$	to ligands o	r [1]		
				Par	t (c): [2]		
	(d)	(i)	Haemoglobin transports oxygen in the blood or fro	om lungs (to	o tissues) [1]		
		(ii)	CO forms stronger bonds to Hb/Fe ²⁺ than does O ₂ affinity or bonds irreversibly or forms more stable of	or CO has l complex	nigher [1]		
				Part	: (d): [2]		
	(e)		Reagent: $I_2 + OH^-$		[1]		
			Observations - ethanol: yellow ppt ./antiseptic smel change	l; methanol:	no [1]		
				Par	t (e): [2]		
				То	tal: [13]		

Pa	age 4	Mark Scheme		Syllabus	Paper				
				A LEVEL – JUN	E 20	05		9701	4
5	(a)		K _a = [RC	CO2 ⁻][H ⁺]/[RCO2H]				[1]
								Par	rt (a): [1]
	(b)	(i)	The mor	e chlorine atoms	s in t	he mol	ecule, the stror	nger the aci	d, [1]
			due to the electron-withdrawing (inductive) effect of C <i>l</i> eitherstabilising the anion, or spreading (-) charge more, orweakening the O-H bond in the acid, orincreasing ionis orfacilitates H ⁺ donation orcausing the equilibrium $\text{RCO}_2\text{H} \Rightarrow \text{RCO}_2^- + \text{H}^+$ to lie furth the right. Mark is conditional on reference to the effect of presence of				f C <i>l</i> ge more, asing ionisa to lie furthe esence of	[1] ation, er to [1]	
		(ii)	[H⁺] = √((0.1 x 1.4 x 10 ⁻³)	=	0.011	8 (mol dm ⁻³) all	ow 0.012	[1]
			∴ pH =	-log ₁₀ (0.0118)	=	1.93	Allow 1.9 or 1	.92 e.c.f	. [1]
		(iii)	pK _a = -lo	og₁₀(5.5 x 10 ⁻²)	=	1.26	Allow 1.3		[1]
								Par	t (b): [6]
	(c)	(i)	C <i>l</i> ₂ (aq)	A <i>l</i> Cl ₃ or UV nega	ates				[1]
		(ii)	Electrop	hilic substitution	or a	dditior	n-elimination		[1]
			Nucleop If neithe substitut	hilic substitution r mark is awarde tion x2	or e d, co	lectrop ould gi	bhilic substitutio ve "salvage" ma	n on OH gr ark for	oup [1]
		(iii)	Either: or: or: or: or: or: (in each	add Br ₂ (aq) add FeC <i>l</i> ₃ (aq) add NaOH(aq) add UI solution add "diazonium case, A give no	pho pho pho pho "to s pho read	enol de enol gir enol dis enol go solutior enol gir ction)	ecolourises it, o ve a purple colo ssolves bes yellow/oran n in OH ⁻ ves orange/red	r gives a wh our ge (A stays colour	nite ppt. green)
			or: or: or: or:	add $Cr_2O_7^2$ -/H ⁺ // add MnO_4^- /H ⁺ //w add PC l_5 /POC l_4^- add CH ₃ CO ₂ H -	warr varm ₃/PC + coi	n A ch A ch : <i>1</i> ₃ /SOC nc. H ₂ S	hanges colour f hanges from pu Cl ₂ A gi SO ₄ A gi	rom orange rple to colo ves fumes ves fruity sr	to green urless nell
			(in each case, no change with phenol)						
			Test + reagents [1] Both observations [1]			tions [1]			
								Par	t (c): [5]

Total: [12]

Page 5 Mark Scheme			Mark Scheme	Syllabus	Paper
			A LEVEL – JUNE 2005	9701	4
6	(a)	(i)	Electrophilic substitution or nitration		[1]
		(ii)	$HNO_3 + H_2SO_4$		[1]
			(both) conc., and at $50^{\circ}C \le T \le 60^{\circ}C$		[1]
		(iii)	NO_2^+		[1]
			H NO ₂ H NO ₂		
			etc. or		
			Any \oplus on NO ₂ or H negates		[1]
			H⁺		[1]
				Par	t (a): [6]
	(b)	(i)	Reduction		[1]
		(ii)	Sn/Fe/Zn/SnCl ₂ + HCl/H ⁺ /H ₂ SO ₄ (but not conc. H ₂ S or H ₂ + Ni/Pt (not LiA <i>l</i> H ₄)	3O ₄)	[1]
				Par	t (b): [2]
	(c)		$PCl_5/PCl_3/SOCl_2/POCl_3$ (+ heat) aq nega	tes	[1]
				Par	t (c): [1]
	(d)	(i)	An amide, not peptide		[1]
		(ii)	Heat with H₃O ⁺ or heat with OH ⁻ (aq)		
			Or warm (not heat/reflux) with aqueous amidase/p enzyme/trypsin/chymotrysin/pepsin/papain etc.	eptidase/pr	otease not [1]
				Par	t (d): [2]
				То	otal: [11]