UNIVERSITY OF CAMBRIDGE INTERNATIONAL EXAMINATIONS

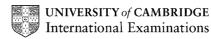
GCE Advanced Level

MARK SCHEME for the June 2005 question paper

9701 CHEMISTRY

9701/06

Paper 6 (Options), maximum raw mark 40


This mark scheme is published as an aid to teachers and students, to indicate the requirements of the examination. It shows the basis on which Examiners were initially instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began. Any substantial changes to the mark scheme that arose from these discussions will be recorded in the published *Report on the Examination*.

All Examiners are instructed that alternative correct answers and unexpected approaches in candidates' scripts must be given marks that fairly reflect the relevant knowledge and skills demonstrated.

Mark schemes must be read in conjunction with the question papers and the *Report on the Examination*.

• CIE will not enter into discussion or correspondence in connection with these mark schemes.

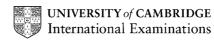
CIE is publishing the mark schemes for the June 2005 question papers for most IGCSE and GCE Advanced Level and Advanced Subsidiary Level syllabuses and some Ordinary Level syllabuses.

Grade thresholds for Syllabus 9701 (Chemistry) in the June 2005 examination.

	maximum	minimum mark required for grade:			
	mark available	А	В	Е	
Component 6	40	23	20	11	

The thresholds (minimum marks) for Grades C and D are normally set by dividing the mark range between the B and the E thresholds into three. For example, if the difference between the B and the E threshold is 24 marks, the C threshold is set 8 marks below the B threshold and the D threshold is set another 8 marks down. If dividing the interval by three results in a fraction of a mark, then the threshold is normally rounded down.

June 2005


GCE A LEVEL

MARK SCHEME

MAXIMUM MARK: 40

SYLLABUS/COMPONENT: 9701/06

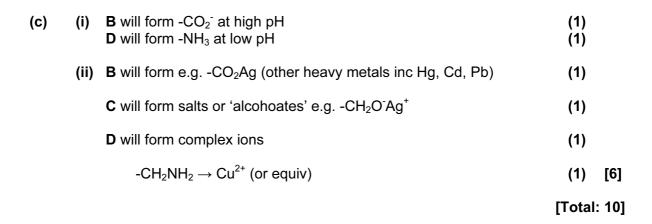
CHEMISTRY Paper 6 (Options)

Page 1	Mark Scheme	Syllabus	Paper
	A LEVEL – June 2005	9701	6

Biochemistry

1 (a) (i) Carboxylic acid and amino/amine groups (formulae accepted) (1) (ii) $H_{2}N - \frac{H}{c} - \frac{H}{c} - N - \frac{H}{c} - c q_{2}H$ $H_{2}N - \frac{H}{c} - \frac{H}{c} - N - \frac{H}{c} - c q_{2}H$

(1) [2]


(b) (i)

(ii)

(1)

и 1 H3N- с-соли (СHL), +NH,

(1) [2]

	Page 2		Mark Scheme Syllabus		Paper]
			A LEVEL – June 2005	9701	6]
2	(a)	(i)	T is present in DNA not RNA (or U present in RNA)		(1)	
			DNA is double helix/RNA usually single strand		(1)	
		(ii)	X is deoxyribose		(1)	
			Y is phosphate/phosphorus		(1)	[4]
	(b)	Sine	ce A is 29%, T must also be 29%		(1)	
		G =	$C = \frac{(100 - 58)}{2} = 21\%$		(1)	[2]
	(c)	Sec	uence of 3 bases in m-RNA/triplet code/codon		(1)	
		Cor	responds to a particular amino acid		(1)	
		m-F	RNA is complementary to section of 1 strand of DNA1		(1)	
		Bas	e sequence of m-RNA/DNA determines the primary struc	ture	(1)	
		Oth	er codons are for initiation or termination		(1)	
					[4 r	nax]
					[Total	: 10]

	Page 3	Mark Scheme	Syllabus	Paper
		A LEVEL – June 2005	9701	6
Env	/ironme	ental Chemistry		
3	(a)	Formation of photochemical smog		(1)
		Compounds irritate mucous membranes/respiratory syster	n	(1)
		Photosynthesis is adversely affected		(1)
		Increases 'greenhouse effect'		(1) [Any 2]

(b)	NO + $O_3 \rightarrow NO_2$ + O_2		
	$O_3 \rightarrow O$ + O_2	3 eqns => 2 marks 2 eqns => 1 mark	(2)
	NO_2 + $O_{\bullet} \rightarrow NO$ + O_2		(2)

NO is regenerated in the third reaction so reaction continues	(1)	[3]
---	-----	-----

(c)	(i)	O ₃	+	H_2O	\rightarrow	$O_2 + 2OH \cdot (or other sensible eqns)$	(1)

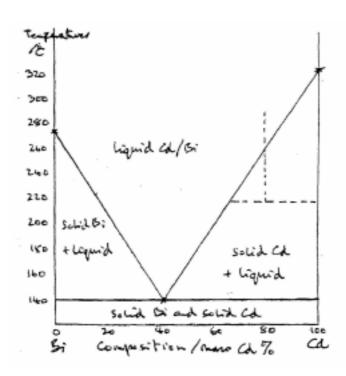
(ii)	NO is used up thus preventing the continued destruction of ozone					
	OH• is regenerated so the reaction continues	(1)				

Some comment about hydrocarbons providing an alternative	
oxidation pathway without using ozone	(1)

[Total: 10]

4 (a) $O_2 + 4H^+ + 4e^- \Rightarrow 2H_2O E^{\circ} = 1.23 V$ (1) [1]

(b)	The oxygen concentration is lower	(1)		
	The pH is higher	(1)	[2]	


(c)	(i)	Increase in the pH of the soil affects the half-cell reaction	(1)
		Waterlogging reduces oxygen circulation	(1)
	(ii)	$Fe^{3+} + e^- \Rightarrow Fe^{2+} E^{\Theta} = 0.77 V$	(1)

In normal soil the E° drops from 1.23 V to 0.83 V, any further drop		
takes it below that in the half-equation above	(1)	[4]

Page	4		Syllabus	Paper]
		A LEVEL – June 2005	9701	6]
(d)	(i)	Extreme reducing conditions produce hydrogen sulphide		(1)	
		SO_4^{2-} + 10H ⁺ + 8e ⁻ = H ₂ S + 4H ₂ O		(1)	
	(ii)	Hydrogen sulphide will gradually kill plants as it reacts wit	th iron	(1)	[3]
				[Total:	: 10]
Phase Eq	uilibri	a			
5 (a)	(i)	The mass of gas which dissolves in a given volume of sol a particular temperature, is proportional to the pressure o		(1)	
	(ii)	24 dm ³ of oxygen weighs 32 g Hence 0.2 dm ³ of oxygen weighs $\frac{0.2 \times 32}{24}$ = 0.267 g		(1)	
	(iii)	Volume of oxygen = $0.031 \times 10^3 = 31 \text{ cm}^3$ Thus the mass of oxygen = $\frac{31 \times 32}{24000} = 0.041(3) \text{ g}$		(1)	[3]
(b)		nry's Law only holds at a given temp and when the same (r cies are present in both gas and liquid phases	molecular)	(1)	
	The	e blood will not be at the same temperature as the atmosph	nere	(1)	
	In b	blood the oxygen is present as O_2 - haemoglobin complex		(1)	
	CO	₂ reacts with blood		(1)	[4]
(c)	(i)	Mass of O ₂ = 5 x 5 x 0.0413 = 1.03 g		(1)	
	(ii)	Oxygen will not form bubbles as it combines with haemog	globin,	(1)	
		hence the gas is nitrogen		(1)	
		CO_2 reacts with blood/forms H_2CO_3 /forms H^+ and HCO_3^-		(1)	[4]

[Total: 10]

Page 5	Mark Scheme	Syllabus	Paper
	A LEVEL – June 2005	9701	6

axes (1) points and lines (1) labels of 3 areas (1)

(b)	(i) 140 °C/eutectic temperature	(1)	
	(ii) 41% Cd (eutectic)	(1)	[2]
(c)	The liquid is 66 <u>+</u> 2% Cd Hence the composition by mass is Bi 40g and Cd 80g The solid is cadmium, and there is 80 g of it	(1) (1) (1)	[3]
(d)	Two valid explanations e.g.		
	The metals have different atomic radii Different electronic arrangement giving different colour The lattice structure of the alloy is different/disrupted	2 x (1) [Total:	[2] : 10]

Page 6	Mark Scheme	Syllabus	Paper
	A LEVEL – June 2005	9701	6

Spectroscopy

7	(a)	Addition of ligands causes splitting of d-orbitals	(1)	
		Electron(s) are promoted from lower to higher energy orbitals	(1)	
		Energy is absorbed	(1)	
		This is in the visible region	(1)	[4]
	(b)	Green/turquoise/cyan	(1)	
		Minimum energy absorbed is at 400 nm and above 600 nm (Accept in blue and red parts of spectrum)		
		or colour is compliment of energy absorbed	(1)	[2]
	(c)	(i) $n \rightarrow \sigma^*$	(1)	
		(ii) π → π*	(1)	
		(iii) $\pi \rightarrow \pi^*, n \rightarrow \sigma^*, n \rightarrow \pi^*$ $3 \rightarrow 2, 2 \rightarrow 1, 1 \rightarrow 0$	(2)	[4]
		ſ	Total	10]

Page 7	Mark Scheme	Syllabus	Paper
	A LEVEL – June 2005	9701	6
From mass spe	ectrum		
8 <i>M</i> _r of Y is 2 M : M +	210 1 = 0.65 : 0.11		
No of carb	pons present = $0.11 \times \frac{100 = 15}{0.65 \times 1.1}$		(1)
From nm	r spectrum		
There are	only two types of proton present		(1)
Since <i>M</i> _r c	of Y is 210, this suggests $C_{15}H_{14}O$		(1)
Absorptior	n at 7.2 δ suggests C ₆ H ₅ - groups		(1)
This leave	es -CH ₂ - groups		(1)
C=O is ce	ntral/between CH ₂ groups		(1)
From ir s	pectrum		
Strong abs	sorption at 1720 cm ⁻¹ suggests C=O		(1)
There is n	o characteristic -OH absorption		(1)
There is n	o characteristic -C-O absorption		(1)
Y is likely	to be - c++2 c c++2-0		(1)
Additiona	al possible marks from mass spectrum		
91 -	(a)- cm ⁺		(1)
119 -	()-cn2-e"+		(1)
28 -	C ⁺ = O		(1)

[Total: max 10]

	Page 8		Mark Scheme	Syllabus	Paper]
			A LEVEL – June 2005	9701	6	
Tra	nsition	Elem	ients			
9	(a)	occ	urs as cobalamine/vitamin B ₁₂		(1)	
			ch is needed to prevent pernicious anaemia used to synthesise amino acids <u>or</u> carbon-carbon bonds e	tc.	(1)	[2]
	(b)	(i)	E^{e} for Co^{3+}/Co^{2+} is + 1.82V E^{e} for O_2/OH^{-} is -0.40V		(1)	
			O_2 is not strong enough to oxidise $Co^{2+}(aq)$, but is more $E^{\circ}([Co(NH_3)_6]^{3+}/[Co(NH_3)_6]^{2+})$, so oxidation occurs.	positive tha	an (1)	
		(ii)	E^{e} for Co^{3+}/Co^{2+} is + 1.82V E^{e} for $Cr_2O_7^{2-}/Cr^{3+}$ is + 1.33V		(1)	
			so oxidation from green (Cr^{3^+}) to orange ($Cr_2O_7^{2^-}$) will or $6Co^{3^+} + 2Cr^{3^+} + 7H_2O \longrightarrow 6Co^{2^+} + Cr_2O_7^{2^-} + 14$	ccur H⁺	(1) (1)	[5]
	(c)	То	make stainless steel/chromium plating/nichrome wire		(1)	[1]
	(d)	(NH	$M_4)_2Cr_2O_7 \longrightarrow N_2 + 4H_2O + Cr_2O_3$		(1)	
		gas	ses are N_2 + steam		(1)	[2]
					[Total:	: 10]
10	(a)	bot	h zinc and copper dissolve at the anode:		(1)	
			- $2e^{-} \longrightarrow Cu^{2+}(aq)$ - $2e^{-} \longrightarrow Zn^{2+}(aq)$ (both)		(1)	
		•	per is preferentially discharged at the cathode $Cu^{2+} + 2e^{-} \longrightarrow Cu(s)$		(1)	
		E°(Z	$Cu^{2+}/Cu) = +0.34V$ $Zn^{2+}/Zn) = -0.76V$ ice zinc remains in solution		(1)	[4]
	(b)	alde	ehydes <u>reduce</u> Cu(II) to Cu(I) <u>not</u> Cu		(1)	
			$HO + 2Cu^{2+} + 5OH^{-} \longrightarrow RCO_{2}^{-} + Cu_{2}O + 3H_{2}O$ $2Cu^{2+} + 2OH^{-} + 2e^{-} \longrightarrow Cu_{2}O + H_{2}O$		(1)	
		Cu ₂	O forms a (brick) red ppt.		(1)	[3]

Page 9	Mark Scheme	Syllabus	Paper
	A LEVEL – June 2005	9701	6

(c) (i) CuI = 63.5 + 127 = 190.5

	moles CuI = 1.16/190.5 = 0.00609	(1)	
	mass of Cu = 0.00609 x 63.5 = 0.3867g		
	% of Cu = 100 x 0.3867/0.5 = 77.3%	(1)	
(ii)	zinc	(1)	[3]

(ii) zinc

[Total: 10]