MARK SCHEME for the May/June 2007 question paper

9701 CHEMISTRY

9701/02

Paper 2 (AS Structured Questions), maximum raw mark 60

This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began.

All Examiners are instructed that alternative correct answers and unexpected approaches in candidates' scripts must be given marks that fairly reflect the relevant knowledge and skills demonstrated.

Mark schemes must be read in conjunction with the question papers and the report on the examination.

• CIE will not enter into discussions or correspondence in connection with these mark schemes.

CIE is publishing the mark schemes for the May/June 2007 question papers for most IGCSE, GCE Advanced Level and Advanced Subsidiary Level syllabuses and some Ordinary Level syllabuses.

UNIVERSITY of CAMBRIDGE International Examinations

Page 2		Mark Scheme	Syllabus	Paper	
		GCE A/AS LEVEL – May/June 2007	9701	02	
(a) (i)	betw	veen 117° and 120°		[1]	
(ii)		xx = ##			
.,	653	Ho'N *N * H			
		н [°] н́			
	14 e	lectrons must be shown			
		le N-N bond		[1]	
	lone	pair on each N atom		[1]	
(iii)	betw	veen 107° and 109°		[1] [4]	
(b) eth	iene –	van der Waals' forces		[1]	
hyd	drazin	e – hydrogen bonds		[1]	
	•	n bonds are stronger			
orv	van de	er Waals' forces are weaker		[1] [3]	
(c) cor	rect d	ipole on O—H and N—H bonds		[1]	
lab	elled l	hydrogen bond shown			
		an O atom of H_2O and a H atom of N_2H_4		[4]	
or	Detwe	en an N atom of N_2H_4 and a H atom of H_2O		[1]	
lon	e pair	on O atom or on N atom in the H bond			
i.e.		1 1			
	_	N :H_O			
	01				
				[1] [3]	
		-0:h=-N=-			
(d) (i)	CH_2	$= CH_2 + HCl \rightarrow CH_3CH_2Cl$		[1]	
(ii)	elec	trophilic addition		[1]	
(iii)	there	e is no further unsaturation			
(,	or C	H ₃ CH ₂ C <i>l</i> molecule is saturated			
		o possibility of addition o free radicals are present		[1] [3]	
(a) (i)				[1] [3]	
(e) (i)	aciù	- base/neutralization		[1]	
(ii)		om has a lone pair of electrons			
		atom can behave as a base atom can form dative bond		[1]	
/:::>					
(iii)		n N atom has a lone pair ach nitrogen atom can behave as a base			
		ach nitrogen atom can form a dative bond		[1] [3]	
				[Total: 16]	

(b)	$\mathcal{K}_{C} = \frac{\left[CH_{3}CO_{2}\right]}{\left[CH_{3}CO_{2}\right]}$	$\frac{C_{2}H_{5}][H_{2}O]}{H][C_{2}H_{5}OH]}$					[1]	[1]
(c)	$CH_3CO_2H + C_2$	$H_5OH \Rightarrow CH_3$	₃ CO ₂ C ₂ H ₅ + I	H₂O				
	initial moles	0.5	0.5	0.1	0.1			
	equil. moles	(0.5 – <i>x</i>)	(0.5 – <i>x</i>)	(0.1 + <i>x</i>)	(0.1 + <i>x</i>)		[1]	
	equil. concn./ mol dm ⁻³	$\frac{(0.5-x)}{V}$	$\frac{(0.5-x)}{V}$	$\frac{(0.1+x)}{V}$	$\frac{(0.1+x)}{V}$			
	$K_c = \frac{(0.1+x)^2}{(0.5-x)^2}$	= 4					[1]	
	gives $x = 0.3$						[1]	
	$n(CH_3CO_2H) =$	n(C ₂ H ₅ OH) =	= 0.2 and					
	n(CH ₃ CO ₂ C ₂ H ₅	$) = n(H_2O) =$	0.4				[1]	
	allow ecf on wr	ong equil. m	oles subject	to <i>x</i> < 0.5				[4]
(d)								
reagent(s and condition		CH₃CH₂CI	H ₂ CH ₂ OH	CH ₃ CH ₂ CH	I(OH)CH₃	(CH₃)₃COH		
red phos iodine heat und	phorus and er reflux		(CH ₃ CH ₂ (СНСН₃ [1]	Х		
concentra heat	ated H ₂ SO ₄		(CH ₃ —C=CH ₂ CH ₃	[1]	
Cr ₂ O ₇ ²⁻ /F		CH ₃ CH ₂ C	H ₂ CO ₂ H	CH ₃ CH ₂ (no reaction		
neat unu			[1]		[1]		[1]	[5]
						רו	fotal:	11]
			©UC	LES 2007				

rate of backward reaction or equilibrium concentrations remain constant while reaction is occurring

Mark Scheme GCE A/AS LEVEL – May/June 2007 Syllabus

9701

Paper

02

[1] **[1]**

(b) $K_{2} = \frac{[CH_{3}CO_{2}C_{2}H_{5}][H_{2}O]}{2}$

(a) rate of forward reaction equals 2

Page 3

Page 4		Mark SchemeSyllaGCE A/AS LEVEL – May/June 200797									Paper
			9701	02							
(a)											
Ì		1s	2s	2р	3s	Зр	3d	4s	4р	4d	
Ca	а	2	2	6	2	6	0	2	0	0	[1]
Sr	2+	2	2	6	2	6	10	2	6		[1]
(b) (i)	mor	re she	lls of ele	ectrons							[1]
(ii)	oute	ermos	t shell h	as been	remove	d					[1]
(iii)			t electro I shieldir		irther fro	om nuci	eus/there	e are m	ore sne	lis	[1] [1]
(c) (i)			reaction								[1]
	forn	nation	of bubb	les of ga	IS						[1]
	-		\rightarrow MgC								[4]
		•		\rightarrow Mg(O	,	2					[1]
(ii)	fast	er rea	ction tha	an with N	/lg						[1]
	white suspension formed <i>or</i> evolution of gas										
				s /es/disap	pears						[1]
	Са	+ 2H₀($0 \rightarrow Ca$	(OH)₂ +	H ₂						[1]
		-		()=	-						
	allo	wim	ark in (i)) or (II) If	gas is c	escribe	ed as col	ouriess			[1]
(d) (i)	aas	evolv	ed								[1]
() (-)	-	is bro									[1]
(ii)	2Sr	(NO ₃)2	$_2 \rightarrow 2Sr$	O + 4NO	2 + O2						
. ,	corr	rect pr	oducts equatio								[1] [1]
	Dala	anced	equalio	11							[1]
										[Tota	l: 17 max.

	Page 5		Mark Scheme	Syllabus	Paper	
		GCE A/	AS LEVEL – May/June 2007	9701	02	
4	(a) (i) whit AgC	te ppt. Cl			[1] [1]	
	(ii) whit HC≀	e/steamy/misty fu	imes		[1] [1]	
		ourless gas evolve or CH₃ONa	ed <i>or</i> Na dissolves		[1] [1]	[6]
	(b) C:H:O	$=\frac{40}{2}:\frac{6.7}{1}:\frac{53.3}{16}$			[1]	
	= 3.33 :	6.7 : 3.33			[1]	
	= 1 : 2 :	1				[2]
	(c) H H -C- H	-с=0 о—н х	H HO OH allow cis or trans	н HO_C_H H_C=0 z		
		[1]	[1]	[1]		[3]
	(d) (i) with can gas,		[1] [1]			
	(ii) with can Ag r	[1] [1]	[4]			
		ect structures [of / labelled <i>cis</i> and				[2]
					[Total:	17]